Rallabandi J, Mohanty S, Shown I. Ruthenium(ii) catalyzed C-3 site selective alkenylation of indole derivatives
via C-H activation.
RSC Adv 2024;
14:37788-37796. [PMID:
39601001 PMCID:
PMC11589813 DOI:
10.1039/d4ra06210h]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
An efficient synthetic method has been developed for C-3 site-selective alkenylation of indole derivatives under ruthenium(ii) catalysis with an ester as a directing group. Besides the presence of two potential C(sp2)-H sites available for functionalization in the substrates, exclusive C3 selectivity was achieved in a selective manner as only mono-functionalized products were formed. The high site selectivity is attributed to the formation of an uncommon six-membered metallacycle intermediate between the ruthenium catalyst and ester directing group, enabled by the selective alkenylation at the C3 position of indole derivatives. This protocol features high site selectivity, operational simplicity, broad substrate scope, and moderate to high yields.
Collapse