1
|
Zhou Q, Xu H, Gao C, Gong Y, Zhang X, Fan X. Synthesis of Indazole Fused 2-Benzazepines with Polarity-Dependent Fluorescence Based on Formal [4 + 3] Annulation of 3-Aryl-1 H-indazoles with Cyclopropenones. J Org Chem 2025; 90:5244-5258. [PMID: 40180635 DOI: 10.1021/acs.joc.5c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The effective assembly of benzazepine skeletons in a sustainable and atom-economical fashion remains a challenging goal in modern organic synthesis. Presented herein is a novel synthesis of indazole fused 2-benzazepine derivatives based on a formal [4 + 3] annulation of 3-aryl-1H-indazoles with cyclopropenones. The formation of products proceeds through Ir(III)-catalyzed aryl C-H bond metalation and cyclopropenone ring-opening leading to aryl acylation, followed by an intramolecular N-nucleophilic conjugated addition. By using this method, a number of valuable benzazepine derivatives were effectively generated. This protocol addresses the challenges in constructing medium-sized rings through cascade C-H/C-C bond activation and C-C/C-N bond formation. Moreover, the photophysical properties of the products thus obtained were also evaluated. It turned out that all compounds tested showed solvent polarity-dependent fluorescence features, which could be potentially applied for revealing the polarity of their immediate environments.
Collapse
Affiliation(s)
- Qianting Zhou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Haiyun Xu
- Faculty of Chemical Engineering, Henan Technical Institute, Zhengzhou, Henan 450042, China
| | - Chang Gao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yijun Gong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Bera S, Pan S, Samanta R. Cu(II)-NHC Catalyzed Insertion of Quinoid Carbenes into cis-Epoxides: Stereoselective Synthesis of trans-Dihydronaphthodioxine. Org Lett 2025; 27:1293-1298. [PMID: 39873337 DOI: 10.1021/acs.orglett.5c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
A straightforward synthesis of trans-dihydronaphthodioxine has been efficiently accomplished through Cu(II)-NHC catalysis, involving the stereoselective ring opening of cis-epoxides with quinoid-carbene. Intramolecular SN2-like substitution facilitates the inversion of stereochemistry during cis-epoxide ring opening. This reaction has been developed under simple conditions, demonstrating a broad substrate scope with a wide chemoselective profile. Additionally, late-stage functionalization of complex bioactive molecules has been successfully achieved.
Collapse
Affiliation(s)
- Satabdi Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Subarna Pan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
3
|
Thunga S, Inapanuri M, Singh N, Kokatla HP. Rongalite as a Methylene Surrogate: Synthesis of Heterodiarylmethanes via C(sp 2)-H Functionalization. J Org Chem 2024; 89:18313-18321. [PMID: 39620955 DOI: 10.1021/acs.joc.4c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
An efficient method for the synthesis of heterodiarylmethanes through the coupling of imidazo[1,2-a]pyridines and heteroarenes using indoles employing rongalite as a methylenating reagent has been developed. This regioselective C-H functionalization provides a wide range of heterodiarylmethanes of imidazo[1,2-a]pyridines and imidazo[2,1-b]thiazole. Here, rongalite plays a crucial role in generating a C1 unit in situ, which triggers the heterodiarylmethylation process. The use of inexpensive rongalite (ca. $0.03/1 g), mild reaction conditions, and gram-scale synthesis are some of the key features of this methodology.
Collapse
Affiliation(s)
- Sanjeeva Thunga
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Madhu Inapanuri
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Neetika Singh
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Hari Prasad Kokatla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India
| |
Collapse
|
4
|
Zhang Y, Yan H, Zhao P, Chen R, Fang W, Wang L, Ma Y. Eco-friendly α,β-C(sp 3)-H difunctionalization of tertiary amines via sequential [1,5]-hydride transfer and hetero-Diels-Alder cyclization. Chem Commun (Camb) 2024; 60:10712-10715. [PMID: 39239740 DOI: 10.1039/d4cc02858a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
An unprecedented eco-friendly multi-component domino reaction for the synthesis of novel N,O-acetals is reported. The protocol involves sequential coupling, [1,5]-hydride transfer and hetero-Diels-Alder cyclization. This new strategy enables direct α,β-difunctionalization of cyclic amines utilizing enamines generated in situ. The methodology features high atom and step economy, excellent regioselectivity, a simple work-up procedure and molecular diversity.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue Taizhou, 318000, People's Republic of China.
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Huihui Yan
- Center for Clinical Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310011, China
| | - Peng Zhao
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue Taizhou, 318000, People's Republic of China.
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue Taizhou, 318000, People's Republic of China.
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue Taizhou, 318000, People's Republic of China.
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue Taizhou, 318000, People's Republic of China.
| |
Collapse
|
5
|
Zhang Y, Kuang J, Ma Y, Wang L, Fang W. Direct α,β-C-H Difunctionalization of Piperidines for the Construction of the N, O-Acetal Skeleton via 1,5-Hydride Transfer. J Org Chem 2024; 89:13373-13385. [PMID: 39236294 DOI: 10.1021/acs.joc.4c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Herein, we describe an unprecedented Lewis acid-catalyzed annulation of phenols with o-aminobenzaldehydes via a cascade coupling/1,5-hydride transfer/cyclization sequence. The α- and β-positions of cyclic amines were functionalized utilizing enamines generated in situ. A series of complex N,O-acetal derivatives are synthesized in moderate to good yields in one step. The methodology features high atom and step economy, excellent diastereoselectivity, and water as the sole byproduct.
Collapse
Affiliation(s)
- Yi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Jinqiang Kuang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
6
|
Yang C, Li B, Zhang X, Fan X. Synthesis of Indenone-Fused Pyran Derivatives from Aryl Enaminones and Cyclopropenones through Unsymmetrical Relay C-H Bond Activation and Double C-C/C-O Bond Formation. Org Lett 2024; 26:6602-6607. [PMID: 39078057 DOI: 10.1021/acs.orglett.4c02197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Presented herein is a novel synthesis of indenone-fused pyran derivatives via the cascade reactions of aryl enaminones with cyclopropenones. The formation of products involves a one-pot cascade procedure consisting of aryl C-H bond and enamine C-H bond functionalization along with C-C bond cleavage of cyclopropenone and 1,3-rearrangement of the in situ-formed allylic alcohol moiety followed by intramolecular O-nucleophilic addition and Me2NH elimination. To our knowledge, this is the first synthesis of indenone-fused pyran derivatives via simultaneous formation of both indenone and pyran scaffolds through concurrent unsymmetrical relay C-H bond activation and double C-C/C-O bond formation. Moreover, the usefulness of this method is further showcased by its suitability for large-scale synthetic scenarios and diverse transformations of products.
Collapse
Affiliation(s)
- Chun Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bin Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
8
|
Wang M, Xu Y, Hou H, Zhang X, Fan X. Divergent synthesis of pyrrolizine derivatives through C-H bond functionalization of pyrroles. Chem Commun (Camb) 2024; 60:6536-6539. [PMID: 38841891 DOI: 10.1039/d4cc02158d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Presented herein is the synthesis of diversely functionalized pyrrolizines from the reaction of N-alkoxycarbamoyl pyrroles with CF3-ynones. The formation of the product is based on a C-H bond activation-initiated cascade process including N-alkoxycarbamoyl group-directed alkenylation of the pyrrole scaffold followed by simultaneous intramolecular nucleophilic addition along with cleavage and transfer of the directing group. By taking advantage of the rich chemistry of the transferred alkoxycarbamoyl moiety, the products could be transformed into a series of structurally and biologically interesting pyrrolizine derivatives. To our knowledge, this is the first example in which the N-alkoxycarbamoyl unit acted as a transferable and transformable directing group for the divergent synthesis of pyrrolizines.
Collapse
Affiliation(s)
- Manqing Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yuanshuang Xu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Huihang Hou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
9
|
Huang YT, Huang WW, Huang YT, Chen HR, Barve IJ, Sun CM. Substrate-Controlled Divergent Synthesis of Benzimidazole-Fused Quinolines and Spirocyclic Benzimidazole-Fused Isoindoles. J Org Chem 2024; 89:7513-7520. [PMID: 38722245 PMCID: PMC11165576 DOI: 10.1021/acs.joc.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
A Rh(III)-catalyzed annulation of 2-arylbenzimidazoles with α-diazo carbonyl compounds via C-H activation/carbene insertion/intramolecular cyclization is explored. The switchable product selectivity is achieved by the use of distinct α-diazo carbonyl compounds. Benzimidazole-fused quinolines are obtained through [4 + 2] annulation exclusively when 2-diazocyclohexane-1,3-diones are used, where they act as a C2 synthon. Alternatively, diazonaphthalen-1(2H)-ones merely function as a one-carbon unit synthon to generate a quaternary center through [4 + 1] cyclization to afford spirocyclic benzimidazole-fused isoindole naphthalen-2-ones. A thorough mechanistic study reveals the course of the reaction.
Collapse
Affiliation(s)
- Ying-Ti Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
| | - Wan-Wen Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
| | - Yi-Ting Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
| | - Hong-Ren Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
| | - Indrajeet J. Barve
- Department
of Chemistry, MES Abasaheb Garware College, Pune 411004, Maharashtra India
| | - Chung-Ming Sun
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan ROC
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, 100,
Shih-Chuan first Road, Kaohsiung 807-08, Taiwan ROC
| |
Collapse
|
10
|
Wang M, Yan S, Li B, Hou H, Ma C, Zhang X, Fan X. Synthesis of CF 3-Substituted N-Heterocyclic Compounds Based on C-H Activation-Initiated Formal [2 + 3] Annulation Featuring with a Latent Nucleophilic Site. J Org Chem 2024. [PMID: 38773933 DOI: 10.1021/acs.joc.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Presented herein is a novel synthesis of CF3-substituted pyrrolo[1,2-a]indole derivatives based on the cascade reactions of N-alkoxycarbamoyl indoles with CF3-ynones. Mechanistically, the formation of a product involves a tandem process initiated by Rh(III)-catalyzed and N-alkoxycarbamoyl group-directed regioselective C2-H alkenylation of the indole scaffold followed by in situ removal of the directing group and intramolecular N-nucleophilic addition/annulation under one set of reaction conditions. To our knowledge, this is the first example in which a N-alkoxycarbamoyl unit initially acts as a directing group for C2-H functionalization of the indole scaffold and is then removed to provide the required reactive NH-moiety for subsequent intramolecular condensation. Moreover, the products thus obtained could be conveniently transformed into structurally and biologically attractive cycloheptenone fused indole derivatives through an acid-promoted cascade transformation. In addition, studies on the activity of selected products against human cancer cell lines demonstrated their potential as lead compounds for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Manqing Wang
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shengnan Yan
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bin Li
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Huihang Hou
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Chunhua Ma
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xinying Zhang
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xuesen Fan
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
11
|
Sarkar S, Bhunya S, Pan S, Datta A, Roy L, Samanta R. Rh(II)-catalysed N2-selective arylation of benzotriazoles and indazoles using quinoid carbenes via 1,5-H shift. Chem Commun (Camb) 2024; 60:4727-4730. [PMID: 38597372 DOI: 10.1039/d4cc00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
An efficient Rh(II)-catalyzed highly selective N2-arylation of benzotriazole, indazole, and 1,2,3 triazole is developed using diazonaphthoquinone. The developed protocol is extended with a wide scope. In addition, late-stage arylation of these scaffolds tethered with bioactive molecules is explored. Control experiments and DFT calculations reveal that the reaction proceeds presumably via nucleophilic addition of the N2 (of the 1H tautomer) center to quinoid-carbene followed by a 1,5-H shift.
Collapse
Affiliation(s)
- Souradip Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Sourav Bhunya
- Indian Association for the Cultivation of Science, 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subarna Pan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Arnadeep Datta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India.
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
12
|
Wang K, Sun Y, Li B, Zhang X, Fan X. Expeditious Synthesis of Spiroindoline Derivatives via Tandem C(sp 2)-H and C(sp 3)-H Bond Functionalization of N-Methyl- N-nitrosoanilines. Org Lett 2024; 26:3091-3096. [PMID: 38567810 DOI: 10.1021/acs.orglett.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Presented herein is a novel synthesis of pharmaceutically privileged spiroindoline derivatives via cascade reactions of N-methyl-N-nitrosoanilines with diazo homophthalimides. A group of mechanistic studies disclosed that the formation of product involves an unusual reaction mode of N-methyl-N-nitrosoaniline featuring an initial C(sp2)-H bond activation/alkylation followed by a C(sp3)-H bond activation/spiroannulation. To our knowledge, this is the first example in which N-methyl-N-nitrosoaniline acts as a C3N1 synthon to accomplish formal [4+1] spiroannulation with the participation of the N-methyl unit rather than the previously reported C2N1 synthon to undergo formal [3+2] annulation without the participation of the N-methyl unit. In general, this newly developed synthetic protocol features simple and readily accessible starting materials, valuable products, unique reaction mechanism, high efficiency and atom-economy, excellent compatibility with diverse functional groups, and ready scalability.
Collapse
Affiliation(s)
- Kelin Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqian Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bin Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
13
|
Xu Y, Xiao Y, Zhang X, Fan X. Synthesis of Naphtho[1',2':4,5]furo[3,2- b]pyridinones via Ir(III)-Catalyzed C6/C5 Dual C-H Functionalization of N-Pyridyl-2-pyridones with Diazonaphthalen-2(1 H)-ones. Org Lett 2024; 26:786-791. [PMID: 38251835 DOI: 10.1021/acs.orglett.3c03849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Presented herein is an unprecedented synthesis of naphtho[1',2':4,5]furo[3,2-b]pyridinones via Ir(III)-catalyzed C6/C5 dual C-H functionalization of N-pyridyl-2-pyridones with diazonaphthalen-2(1H)-ones. This protocol forms C-C and C-O bonds in one pot in which diazonaphthalen-2(1H)-ones serve as bifunctional reagents, providing both alkyl and aryloxy sources. To the best of our knowledge, this is the first example of an Ir(III)-catalyzed synthesis of the title compounds by using diazonaphthalen-2(1H)-ones as bifunctional substrates. Notably, this method features operational simplicity, good functional group tolerance, high efficiency, and high atom economy.
Collapse
Affiliation(s)
- Yuanshuang Xu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yujing Xiao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
14
|
Ozomarisi HE, Sharpe KT, Outlaw VK. A Synthetic Route to Highly Substituted 1-Aminonaphthalenes from Readily Available Benzaldehydes. J Org Chem 2024. [PMID: 38170997 DOI: 10.1021/acs.joc.3c02324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We report an efficient route for the synthesis of highly substituted 1-aminonaphthalenes from benzaldehydes. The method employs a stereoselective Still-Gennari modification of the Horner-Wadsworth-Emmons olefination to afford (E)-benzylidenesuccinonitrile precursors, which undergo Bronsted acid mediated benzannulation to afford 1-aminonaphthalene derivatives in 35-95% yield. The abundance of commercially available benzaldehydes, coupled with the simplicity of our method, enables many previously unexplored naphthalene substitution patterns to become readily accessible.
Collapse
Affiliation(s)
- Hamza Enesi Ozomarisi
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kellen T Sharpe
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Victor K Outlaw
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
15
|
Jagtap PA, Lokolkar MS, Bhanage BM. Cu-Mediated Tandem 2,3-Disubstituted Indole Synthesis from Simple Anilines and Internal Alkynes via C-H Annulation. J Org Chem 2023. [PMID: 37463299 DOI: 10.1021/acs.joc.3c00954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
A simple, cost-effective, and straightforward method for the synthesis of 2,3-disubstituted indole scaffolds has been developed. The present protocol involves copper-mediated tandem hydroamination followed by C-H annulation of unprotected anilines with a wide range of internal alkynes. In the presence of Cu(OAc)2·H2O and trifluoroacetic acid (TFA), the reaction proceeds well to afford a variety of substituted indole derivatives in moderate to good yields. This process was found to be compatible with both primary and secondary anilines coupled with aromatic/aliphatic alkynes. High-purity copper nanoparticles can be recovered after the reaction, revealing the cost-effectiveness and environmentally benign feature of the current protocol.
Collapse
Affiliation(s)
- Prafull A Jagtap
- Department of Chemistry, Institute of Chemical Technology, Mumbai 400019, India
| | | | | |
Collapse
|
16
|
Abstract
A convenient method for the synthesis of indoles has been developed by the sequential orchestration of the cross-coupling reaction of o-haloaniline and PIFA oxidation of the resulting 2-alkenylanilines. A highlight of this two-step indole synthesis is a modular strategy which is applicable to both acyclic and cyclic starting materials. Particularly noteworthy is the regiochemistry that is complementary to the Fischer indole synthesis and related variants. Direct preparation of N-H indoles with no N-protecting group is also advantageous.
Collapse
Affiliation(s)
- Assia Chebieb
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Laboratory of Catalysis and Organic Synthesis LCSCO, University of Tlemcen, Tlemcen 13000, Algeria
| | - Young Gyu Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Kun Cha
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
17
|
Su J, Yan Z, Sun J. Rhodium-Catalyzed N-Arylation of 2-Pyridones Enabled by 1,6-Acyl Migratory Rearrangement of 2-Oxypyridines. Org Lett 2023; 25:1974-1977. [PMID: 36920185 DOI: 10.1021/acs.orglett.3c00519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
An efficient rhodium-catalyzed dearomative rearrangement of 2-oxypyridines with quinone diazides has been developed for the direct synthesis of N-arylated pyridones, in which a novel 1,6-O-to-O rather than 1,4-O-to-C acyl rearrangement has been achieved under mild reaction conditions.
Collapse
Affiliation(s)
- Jiahui Su
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zichun Yan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
18
|
Li H, Shen M, Li B, Zhang X, Fan X. Solvent-Dependent Selective Synthesis of CF 3-Tethered Indazole Derivatives Based on Multiple Bond Activations. Org Lett 2023; 25:720-725. [PMID: 36706028 DOI: 10.1021/acs.orglett.2c04003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Presented herein is a solvent-dependent selective synthesis of CF3-tethered indazole derivatives via the cascade reactions of 1-arylpyrazolidinones with trifluoromethyl ynones. Mechanistically, the formation of the title products involves cascade N-H/C-H/C-N/C-C bond cleavage along with pyrazole ring formation and pyrazolidinone ring opening. For the formation of a pyrazole scaffold, 1-phenylpyrazolidinone acts as a C2N2 synthon, while trifluoromethyl ynone serves as a C1 synthon. Meanwhile, trifluoromethyl ynone also acts as an enol unit to facilitate the ring opening of the pyrazolidinone ring and provide a trifluoropropenoxy fragment via cleavage of the alkynyl triple bond and migration of the cleaved moiety. When the reaction was run in trifluoroethanol instead of DCE, it selectively afforded indazole derivatives tethered with a trifluoroethoxy moiety through in situ transesterification. To our knowledge, this is the first synthesis of CF3-tethered indazole derivatives via concurrent alkynyl activation, pyrazole formation, and CF3 migration.
Collapse
Affiliation(s)
- Hao Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengyang Shen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bin Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
19
|
Zhao M, Guo Y, Wang Q, Liu L, Zhang S, Guo W, Wu LP, Qiu FG. Synthesis of 2-iminothiazolidin-4-ones via copper-catalyzed [2 + 1 + 2] tandem annulation. RSC Adv 2023; 13:2220-2224. [PMID: 36741140 PMCID: PMC9834997 DOI: 10.1039/d2ra07872d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
In this paper, an efficient synthesis of 2-iminothiazolidin-4-ones through a copper-catalyzed tandem annulation reaction of alkyl amines, isothiocyanates and diazo acetates is presented. Notable advantages of this [2 + 1 + 2] cyclization methodology include readily accessible starting materials, simple operation, mild reaction conditions, high yields, step-economy and diverse functional group tolerance. In addition, the reaction is applicable to the gram scale synthesis and the preparation of bioactive molecules.
Collapse
Affiliation(s)
- Mingming Zhao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yiming Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qi Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lanqi Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shujie Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 P. R. China
| | - Lin-Ping Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fayang G Qiu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
20
|
Yu C, Xu Y, Zhang X, Fan X. Selective Synthesis of Pyrazolonyl Spirodihydroquinolines or Pyrazolonyl Spiroindolines under Aerobic or Anaerobic Conditions. Org Lett 2022; 24:9473-9478. [PMID: 36524816 DOI: 10.1021/acs.orglett.2c03952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Presented herein is a condition-controlled selective synthesis of pyrazolonyl spirodihydroquinolines or pyrazolonyl spiroindolines through formal [5 + 1] or [4 + 1] spiroannulation of 2-alkenylanilines with diazopyrazolones. Mechanistically, the formation of the title products involves initial generation of a pyrazolonyl spiro-fused seven-membered ruthenacycle species serving as a key intermediate through Ru(II)-catalyzed C-H/N-H bonds metalation, carbene formation, and its migratory insertion. When the reaction is carried out under air, the key intermediate undergoes reductive elimination to afford spirodihydroquinoline. When the reaction is run under argon, the key intermediate undergoes protonation and intramolecular nucleophilic addition to furnish spiroindoline. This work provides an atom-economical protocol for the effective functionalization of alkenyl C(sp2)-H bond, allowing rapid and selective assembly of valuable spiroscaffolds with a broad range of substrates.
Collapse
Affiliation(s)
- Caiyun Yu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
21
|
Shen M, Li H, Zhang X, Fan X. Rh( iii)-catalyzed simultaneous [3 + 3]/[5 + 1] annulation of 1-arylpyrazolidinones with gem-difluorocyclopropenes leading to fluorinated pyridopyrimidinone derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo01230h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented herein is an efficient and concise synthesis of fluorinated pyridopyrimidinone derivatives through formal [3 + 3]/[5 + 1] annulation of 1-arylpyrazolidinones with gem-difluorocyclopropenes.
Collapse
Affiliation(s)
- Mengyang Shen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hao Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
22
|
Guo S, Zhang Z, Zhu Y, Wei Z, Zhang X, Fan X. Rh( iii)-catalyzed substrate-dependent oxidative (spiro)annulation of isoquinolones with diazonaphthoquinones: selective access to new spirocyclic and oxepine-fused polycyclic compounds. Org Chem Front 2022. [DOI: 10.1039/d2qo01322c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An efficient protocol for the selective synthesis of novel isoquinolone-containing spirocyclic and oxepine-fused polycyclic compounds via rhodium(iii)-catalyzed (spiro)annulation of NH-isoquinolones with diazonaphthalen-2(1H)-ones is reported.
Collapse
Affiliation(s)
- Shenghai Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ziyi Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yuanqing Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zhaotong Wei
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|