1
|
Zhang WM, Niu WT, Tan FF, Li Y. Selective Transformation of Biomass and the Derivatives for Aryl Compounds and Hydrogen via Visible-Light-Induced Radicals. Acc Chem Res 2025; 58:1407-1423. [PMID: 40078060 DOI: 10.1021/acs.accounts.5c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
ConspectusFor sustainable development, exploring renewable resources is an urgent priority. Nonfood biomass, one of the largest renewable resources on Earth, primarily comprises three key components: lignin (ca. 15-30%), cellulose (ca. 35-50%), and hemicellulose (ca. 20-30%). Theoretically, nonfood biomass can be converted into green chemicals and energy. However, most studies have focused on the generation of chemicals and carbon-based energy under harsh conditions, often resulting in lower selectivities. Therefore, further efforts to explore efficient and selective methods for producing chemicals and hydrogen (H2) are essential to promoting the practical applications of renewable biomass. In this Account, we summarize our contributions to the efficient and selective transformation of biomass and its derivatives into aryl compounds and H2. These transformations were achieved using visible-light-induced photocatalytic systems that generate active radicals to selectively cleave C-C, C-O, C-H, and O-H bonds under mild conditions, without using noble metals. First, aryl compound production was achieved by chemoselective cleavage of C-C and C-O bonds using aryl carboxyl radicals and aryl ether radical cations. Specifically, the aryl carboxyl radical in the charge-transfer complex induced the chemoselective cleavage of C-C bonds of aryl carboxylic acids, which are platform molecules derived from lignin oxidation; the aryl carboxyl radical in free form facilitated the chemoselective cleavage of C-O bonds in the model of the 4-O-5 lignin linkage. Moreover, arenols and aryl alcohols were obtained via cooperation of the aryl ether radical cation and the vanadate-induced chemoselective cleavage of the C-O bonds of the models of various lignin linkages. Second, we developed a streamlined strategy for H2 production from biomass using a one-pot, two-step route with formic acid (HCO2H) as an intermediate for H2 storage by thermocatalysis. Using this strategy by photoredox catalysis, HCO2H was initially obtained via the alkoxy radical-induced gradual cleavage of C-C bonds in cellulose, hemicellulose, glucose, and their derivatives. Subsequently, efficient H2 production from biomass-based HCO2H was realized via hydroxyl radical (·OH)-induced C-H and the following cleavage of the O-H bonds, with cooperation of the nickel catalysis. Third, the highest H2 production capability from biomass was achieved via efficient water reforming. This process utilized alkoxy radicals followed by generated carbon cations via electrocatalysis, inducing a well-organized cleavage of C-C, O-H, and C-H bonds. We anticipate that these insights will inspire the development of more efficient, stable, and cost-effective catalytic systems, accelerating the utilization of biomass as a renewable resource and driving other related significant transformations.
Collapse
Affiliation(s)
- Wen-Min Zhang
- Frontier Institute of Science and Technology and State Key Laboratory of Multi-phase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 712046, China
| | - Wen-Ting Niu
- Frontier Institute of Science and Technology and State Key Laboratory of Multi-phase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 712046, China
| | - Fang-Fang Tan
- Frontier Institute of Science and Technology and State Key Laboratory of Multi-phase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 712046, China
| | - Yang Li
- Frontier Institute of Science and Technology and State Key Laboratory of Multi-phase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 712046, China
| |
Collapse
|
2
|
Suzuki D, Hashimoto R, Furutani T, Yamawaki M, Suzuki H, Yoshimi Y. Visible Light-Induced Decarboxylative Radical Addition of Heteroaromatic Carboxylic Acids to Alkenes at Room Temperature in Two-Molecule Photoredox System. ChemistryOpen 2025:e2500232. [PMID: 40296317 DOI: 10.1002/open.202500232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
The photoinduced decarboxylative radical addition of aryl carboxylic acids, including heteroaromatic carboxylic acids, to electron-deficient alkenes is achieved in a two-molecule photoredox system using a combination of biphenyl (BP) and 9,10-dicyanoanthracene (DCA) without heating. The low efficiency of the back-electron transfer to aryl carboxyl radicals leads to decarboxylation at room temperature. Various heteroaromatic carboxylic acids, including picolinic acid, nicotinic acid, quinoline carboxylic acid, and pyridazine carboxylic acid, are employed as substrates in the photoreaction. Prolonged irradiation without activation by a base successfully leads to decarboxylation by promoting the deprotonation of carboxylic acids by BP•+.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Ryoga Hashimoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Toshiki Furutani
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
- Department of Chemistry and Biology, Fukui College, National Institute of Technology, Genshi-cho, Fukui, 916-8507, Japan
| | - Mugen Yamawaki
- Department of Chemistry and Biology, Fukui College, National Institute of Technology, Genshi-cho, Fukui, 916-8507, Japan
| | - Hirotsugu Suzuki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| |
Collapse
|
3
|
Furutani T, Matsui Y, Hashimoto R, Ikeda H, Ogaki T, Yamawaki M, Suzuki H, Yoshimi Y. Mechanistic Insight into the Photoinduced Decarboxylative Radical Addition of Carboxylic Acid to Alkenes in a Two-Molecule Photoredox System. J Org Chem 2025; 90:4028-4036. [PMID: 40074669 DOI: 10.1021/acs.joc.4c03132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The detailed mechanism of photoinduced decarboxylative radical addition to alkenes using both the effect of an electron donor (ED)/electron acceptor (EA) and laser flash photolysis in a two-molecule photoredox system was investigated. The concentration of EA•- played an important role in the photoreaction and could be controlled by varying the concentrations of ED/EA and their identity, which influenced ΔGPET. Higher concentrations of ED/EA and a larger negative ΔGPET led to a higher concentration of EA•-, thereby increasing the yield of the adduct; however, the large negative ΔGPET for the generation of the EDA complex hindered decarboxylation. The two-molecule photoredox system is simple and can be easily tuned by adjusting the concentrations and type (ΔGPET) of ED/EA through a simple replacement of ED/EA, which is easier than modulating the oxidation/reduction potential in one-molecule photoredox systems.
Collapse
Affiliation(s)
- Toshiki Furutani
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Geshi-cho, Fukui 916-8507, Japan
| | - Yasunori Matsui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Ryoga Hashimoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Hiroshi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Takuya Ogaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Mugen Yamawaki
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Geshi-cho, Fukui 916-8507, Japan
| | - Hirotsugu Suzuki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
4
|
Hirose M, Sakaguchi H, Hashimoto R, Furutani T, Yamawaki M, Suzuki H, Yoshimi Y. Benzoic Acid Serves as Precursor of Catalytic HAT Reagent in a Two-Molecule Photoredox System. Chemistry 2024; 30:e202402285. [PMID: 38987225 DOI: 10.1002/chem.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
The photoinduced regioselective HAT reactions of acetals, ethers, and alcohols using benzoic acids in a two-molecule photoredox system led to the formation of new C-C bonds with alkenes under mild conditions. Aryl carboxy radicals generated from benzoic acids in a two-molecule photoredox system can function as catalytic HAT reagents, even though an excess amount of a hydrogen donor substrate is required. Various acetals, ethers, alcohols, and alkenes can be employed in the photoreaction to provide both high yields of adducts and high recoveries of benzoic acids.
Collapse
Affiliation(s)
- Masami Hirose
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Hina Sakaguchi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Ryoga Hashimoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Toshiki Furutani
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Geshi-cho, Fukui, 916-8507, Japan
| | - Mugen Yamawaki
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Geshi-cho, Fukui, 916-8507, Japan
| | - Hirotsugu Suzuki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| |
Collapse
|
5
|
Ikeda T, Tanaka Y, Hashimoto R, Furutani T, Yamawaki M, Suzuki H, Yoshimi Y. Double difunctionalization of vinyl ether tethered nucleophile with electron-deficient alkene in two-molecule photoredox system. Photochem Photobiol Sci 2024; 23:1417-1423. [PMID: 38703275 DOI: 10.1007/s43630-024-00588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Double difunctionalization of a vinyl ether tethered hydroxy or carbamoyl group with electron-deficient alkenes such as acrylonitrile or acrylic esters was achieved by visible-light irradiation in a two-molecule photoredox system. Use of anhydrous acetonitrile solution as a solvent promoted both dimerization of the radical cation of electron-rich alkene with electron-rich alkene and intramolecular nucleophilic addition to generate an electron-rich radical that was added to electron-deficient alkene to furnish the double difunctionalized product. A variety of electronically differentiated rich and deficient alkenes were used in the photoreaction; a simple construction of a complex carbon framework containing acetal from simple alkenes was successful under mild conditions.
Collapse
Affiliation(s)
- Takumi Ikeda
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Yosuke Tanaka
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Ryoga Hashimoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Toshiki Furutani
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Genshi-cho, Fukui, 916-8507, Japan
| | - Mugen Yamawaki
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Genshi-cho, Fukui, 916-8507, Japan
| | - Hirotsugu Suzuki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan.
| |
Collapse
|
6
|
Yoshimi Y. Organic Photoredox Reactions in Two-Molecule Photoredox System. CHEM REC 2024; 24:e202300326. [PMID: 38050955 DOI: 10.1002/tcr.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Using our recent relevant results, this account shows the featured reactivities of two-molecule photoredox systems compared to one-molecule photoredox systems. The low efficiency of electron transfer processes, such as photoinduced and back-electron transfer, in the two-molecule photoredox system, furnishes unique products through different pathways. The facile replacement of photoredox catalysts with appropriate oxidation/reduction potentials in this system provides valuable insights into photoredox reactions.
Collapse
Affiliation(s)
- Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| |
Collapse
|
7
|
Vaithiyanathan V, Sivaraman S. Eco-friendly K-10 Clay-Mediated [3 + 3] Spiroannulation of Morita-Baylis-Hillman Adduct of Isatin with Anthracene: Synthesis of Green Fluorophore Compounds. ACS OMEGA 2024; 9:934-941. [PMID: 38222519 PMCID: PMC10785619 DOI: 10.1021/acsomega.3c07084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
An easy and simple spiroannulation of the Morita-Baylis-Hillman adduct of isatin derivatives with anthracene was achieved in moderate-to-good yields (37-75%). The spiroderivatives synthesized in this work exhibited green fluorescence properties. The reaction occurred in metal-free eco-friendly K-10 clay-mediated conditions. The final products have multiple structural features such as 3-spirooxindole, fluorophoric anthracene, phenanthracene, phenalene, and perylene cores.
Collapse
Affiliation(s)
- Vadivel Vaithiyanathan
- Department
of Chemistry, Arignar Anna Govt. Arts College,
(Re-accredited by the NAAC with “B+” and Affiliated
to Annamalai University, Chidambaram), Villupuram 605 602, Tamilnadu
| | - Sivaprakasam Sivaraman
- Department
of Chemistry, Arignar Anna Govt. Arts College,
(Re-accredited by the NAAC with “B+” and Affiliated
to Annamalai University, Chidambaram), Villupuram 605 602, Tamilnadu
| |
Collapse
|
8
|
Shinkawa Y, Furutani T, Ikeda T, Yamawaki M, Morita T, Yoshimi Y. Decarboxylative Side-Chain Functionalization of Aspartic/Glutamic Acids Using Two-Molecule Photoredox Catalysts. J Org Chem 2022; 87:11816-11825. [PMID: 35952660 DOI: 10.1021/acs.joc.2c01606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The side-chain functionalization of aspartic/glutamic acid derivatives through photoinduced decarboxylation was achieved by using organic two-molecule photoredox catalysts without racemization under mild conditions. A facile process involving the preparation of substrates and photoinduced decarboxylative radical additions can provide easy access to the linked amino acids with carbohydrates and amino acids at the side chain.
Collapse
Affiliation(s)
- Yudai Shinkawa
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Toshiki Furutani
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan.,Department of Chemistry and Biology, National Institute of Technology, Fukui College, Genshi-cho, Fukui 916-8507, Japan
| | - Takumi Ikeda
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Mugen Yamawaki
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Genshi-cho, Fukui 916-8507, Japan
| | - Toshio Morita
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|