1
|
Wee WA, Andini TM, Kumagai T, Chinnathambi S, Pandian GN, Millius A, Sugiyama H, Standley DM, Park S. Tiny but mighty! N,N-dimethyl-4-(5-nitrothiophen-2-yl)aniline, a push-pull fluorescent dye for lipid droplet imaging. Anal Chim Acta 2025; 1359:344130. [PMID: 40382107 DOI: 10.1016/j.aca.2025.344130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Accepted: 04/27/2025] [Indexed: 05/20/2025]
Abstract
Lipid droplets (LDs) are ubiquitous cellular organelles with a neutral lipid core containing triacylglycerols and cholesteryl esters surrounded by phospholipids. Recent findings indicate that LDs are intricately linked to diseases, such as cancer and neurological disorders, in addition to their roles in cellular senescence and immune responses. Herein, we describe a simple yet robust push-pull molecule, N,N-dimethyl-4-(5-nitrothiophen-2-yl)aniline (NiTA), as a versatile LD fluorescent probe. NiTA showed an absorption spectrum with a substantial bathochromic shift and a fluorescence spectrum with excellent solvatochromism. Leveraging the remarkable photophysical features of NiTA, we stained LDs in major immune cells, including T and B cells, and macrophages, and monitored the changes in LDs under oxidative and starvation conditions. Furthermore, we demonstrated the applicability of NiTA for visualizing the organization of medaka fish (Oryzias latipes) embryos during development. We expect the small yet powerful NiTA to be utilized in various applications, including fluorescence mapping to observe LD numbers, morphology, and polarity changes in animals and cells.
Collapse
Affiliation(s)
- Wen Ann Wee
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tatum Melati Andini
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
| | - Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Arthur Millius
- Laboratory of System Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
| | - Soyoung Park
- Laboratory of System Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Zheng JY, Luo Y, Ou TT, Zhang XJ, Lao YQ, Feng N, Peng JB, Zhang XZ, Yao X, Ma AJ. Acid-Promoted Cyclization of α-Azidobenzyl Ketones through C═N Bond Formation: Synthesis of 6-Substituted Quinoline Derivatives. Org Lett 2024; 26:586-590. [PMID: 38198745 DOI: 10.1021/acs.orglett.3c03697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
An acid-promoted cyclization of α-azidobenzyl ketones has been developed for the synthesis of 6-substituted quinoline derivatives. A variety of synthetically useful 6-OTf or -OMs quinoline derivatives were obtained in moderate to good yields. The reaction proceeds via C═N bond formation without organophosphine, providing convenient access to structurally interesting and synthetically important 6-substituted quinoline derivatives in moderate to good yields. A mechanistic perspective that is different from the traditional intramolecular Schmidt reaction has been proposed.
Collapse
Affiliation(s)
- Jing-Yun Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Ying Luo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Ting-Ting Ou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Xin-Jie Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Yong-Qiang Lao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| |
Collapse
|
3
|
Agrawal N, Goswami R, Pathak S. Synthetic Methods for Various Chromeno-fused Heterocycles and their Potential as Antimicrobial Agents. Med Chem 2024; 20:115-129. [PMID: 37855281 DOI: 10.2174/0115734064274748231005074100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Chromenes are a significant family of heterocyclic chemicals that have a wide range of biological applications, a simple chemical structure, and only mildly undesirable side effects. The synthesis of a wide range of chromene analogs that displayed unexpected behaviors via numerous mechanisms was investigated by a number of different research teams, which led to the discovery of multiple pathways for their synthesis. In addition, different chromene-fused heterocycles exhibit a wide variety of fascinating biological actions, including those that are anticancer, anticonvulsant, antibacterial, anticholinesterase, antituberculosis, and anti-diabetic. In light of this, the purpose of this study is to highlight the many synthesis techniques and antibacterial activity associated with chromene-fused heterocyclic compounds. Moreover, such research can open avenues for exploring other therapeutic applications of these compounds in various disease areas, as their biological activities extend beyond antibacterial effects.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, UP, India
| | - Radhika Goswami
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, UP, India
| | - Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, UP, India
| |
Collapse
|
4
|
Li Y, Liu T, Sun J. Recent Advances in N-Heterocyclic Small Molecules for Synthesis and Application in Direct Fluorescence Cell Imaging. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020733. [PMID: 36677792 PMCID: PMC9864447 DOI: 10.3390/molecules28020733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Nitrogen-containing heterocycles are ubiquitous in natural products and drugs. Various organic small molecules with nitrogen-containing heterocycles, such as nitrogen-containing boron compounds, cyanine, pyridine derivatives, indole derivatives, quinoline derivatives, maleimide derivatives, etc., have unique biological features, which could be applied in various biological fields, including biological imaging. Fluorescence cell imaging is a significant and effective imaging modality in biological imaging. This review focuses on the synthesis and applications in direct fluorescence cell imaging of N-heterocyclic organic small molecules in the last five years, to provide useful information and enlightenment for researchers in this field.
Collapse
Affiliation(s)
- Yanan Li
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Tao Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Jianan Sun
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- Correspondence:
| |
Collapse
|