1
|
Bhunia S, Box SM, Bera S, Dolai A, Samanta S. Progress of Photoantibiotics in Overcoming Antibiotic Resistance. ChemMedChem 2025; 20:e202400613. [PMID: 39474944 DOI: 10.1002/cmdc.202400613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/28/2024] [Indexed: 02/18/2025]
Abstract
Antibiotic resistance has emerged as a global public health crisis in the 21st century, leading to treatment failures. To address this issue, the medical and pharmaceutical sectors are confronted with two challenges: i) finding potent new antimicrobial agents that would work against resistant-pathogens, and ii) developing conceptually new or unconventional strategies by which a particular antibiotic would remain effective persistently. Photopharmacology with the aid of reversibly controllable light-active antibiotics that we call "photoantibiotics" shows great promise to meet the second challenge, which has inspired many research laboratories worldwide to align their research in inventing or developing such antibiotics. In this review, we have given an overview of the progress made over the last ten years or so towards developing such photoantibiotics. Although making such antibiotics that hold high antimicrobial potency like the native drugs and subsequently maintain a significant activity difference between light-irradiated and non-irradiated states is very challenging, the progress being reported here demonstrates the feasibility of various approaches to engineer photoantibiotics. This review provides a future perspective on the use of such antibiotics in clinical practice with the identification of potential problems and their solutions.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Sk Majid Box
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Satyajit Bera
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Anirban Dolai
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| |
Collapse
|
2
|
Aryal P, Bietsch J, Grandhi GS, Chen R, Adhikari SB, Sarabamoun ES, Choi JJ, Wang G. Synthesis of Bis-Thioacid Derivatives of Diarylethene and Their Photochromic Properties. ACS OMEGA 2024; 9:47489-47499. [PMID: 39651073 PMCID: PMC11618401 DOI: 10.1021/acsomega.4c05945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
Diarylethenes (DAEs) are an important class of photoswitchable compounds that typically undergo reversible photochemical conversions between the open and closed cyclized forms upon treatment with UV light or visible light. In this study, we introduced thioacid functional groups to several photochromic dithienylethene (DTE) derivatives and established a method that can be used to prepare these photoswitchable thioacids. Four thioacid-functionalized diarylethene derivatives were synthesized through the activation of carboxylic acids with N-hydroxysuccinimide, followed by reactions with sodium hydrosulfide with yields over 90%. These derivatives exhibited reversible photoswitching and photochromic properties upon treatment with ultraviolet (UV) and visible lights. The thioacid groups on these compounds can act as reaction sites for attaching other desirable functionalities. The photochromic properties of these new derivatives were characterized by using ultraviolet-visible (UV-vis) spectroscopy. The photocyclizations of one of the derivatives and its potassium salt were also characterized by using nuclear magnetic resonance (NMR) spectroscopy. The anions of the thioacid formed water-soluble photochromic systems, and their applications as colorimetric sensors in agarose hydrogels were demonstrated.
Collapse
Affiliation(s)
- Pramod Aryal
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Jonathan Bietsch
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Gowri Sankar Grandhi
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Richard Chen
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Surya B. Adhikari
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Ephraiem S. Sarabamoun
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Joshua J. Choi
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Guijun Wang
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| |
Collapse
|
3
|
Kalapos P, Kunfi A, Bogner MM, Holczbauer T, Kochman MA, Durbeej B, London G. Salicylideneaniline/Dithienylethene Hybrid Molecular Switches: Design, Synthesis, and Photochromism. J Org Chem 2024; 89:16-26. [PMID: 38060251 PMCID: PMC10777402 DOI: 10.1021/acs.joc.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
A hybrid molecular switch comprising salicylideneaniline (SA) and dithienylethene (DTE) moieties around a single benzene ring is reported. Due to an interplay between solvent-assisted enol-keto tautomerization in the former moiety and photochromic electrocyclization in the latter, this dithienylbenzene derivative was found to be photoresponsive at room temperature with a thermally stable closed form. The main photoproduct featuring ring-closed DTE and keto-enamine SA structures could be isolated and converted back to the starting material by irradiation with visible light. The optical properties of the potential structures involved in the overall process were characterized by using density functional theory (DFT) calculations in good agreement with the measured data. The reversibility of the conversion could be tuned by the presence of donor and acceptor substituents, while the introduction of the imine in the form of a benzothiazole moiety enabled photochemistry even in nonprotic solvents.
Collapse
Affiliation(s)
- Péter
Pál Kalapos
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar
Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Attila Kunfi
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar
Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Marcell M. Bogner
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar
Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Tamás Holczbauer
- Institute
of Organic Chemistry, Centre for Structural
Science, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Michał Andrzej Kochman
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Marcina Kasprzaka
44/52, 01-224 Warsaw, Poland
| | - Bo Durbeej
- Division
of Theoretical Chemistry, IFM, Linköping
University, SE-58183 Linköping, Sweden
| | - Gábor London
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, Research Centre for
Natural Sciences, Magyar
Tudósok Krt. 2, 1117 Budapest, Hungary
| |
Collapse
|
4
|
Shamsipur M, Ghavidast A, Pashabadi A. Phototriggered structures: Latest advances in biomedical applications. Acta Pharm Sin B 2023; 13:2844-2876. [PMID: 37521863 PMCID: PMC10372844 DOI: 10.1016/j.apsb.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 04/11/2023] [Indexed: 08/01/2023] Open
Abstract
Non-invasive control of the drug molecules accessibility is a key issue in improving diagnostic and therapeutic procedures. Some studies have explored the spatiotemporal control by light as a peripheral stimulus. Phototriggered drug delivery systems (PTDDSs) have received interest in the past decade among biological researchers due to their capability the control drug release. To this end, a wide range of phototrigger molecular structures participated in the DDSs to serve additional efficiency and a high-conversion release of active fragments under light irradiation. Up to now, several categories of PTDDSs have been extended to upgrade the performance of controlled delivery of therapeutic agents based on well-known phototrigger molecular structures like o-nitrobenzyl, coumarinyl, anthracenyl, quinolinyl, o-hydroxycinnamate and hydroxyphenacyl, where either of one endows an exclusive feature and distinct mechanistic approach. This review conveys the design, photochemical properties and essential mechanism of the most important phototriggered structures for the release of single and dual (similar or different) active molecules that have the ability to quickly reason of the large variety of dynamic biological phenomena for biomedical applications like photo-regulated drug release, synergistic outcomes, real-time monitoring, and biocompatibility potential.
Collapse
|
5
|
Wang S, Zhou H, Xiong C, Zhou L, Han J, Cao X, Chen S, Li Z. Diestervinyl-functionalized acceptor-acceptor type dithienylethenes with efficient photochromic performance. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122488. [PMID: 36822121 DOI: 10.1016/j.saa.2023.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Exploring novel dithienylethenes (DTEs) with efficient photochromism has drawn increasing attention in virtue of the potential applications for photoelectric functional materials. In this contribution, we presented two novel acceptor-acceptor (A-A) type DTE derivatives (4a and 4b) by incorporating the diestervinyl moieties with strong electron-withdrawing capacity into two sides of DTE skeleton. The corresponding structures were well confirmed by the NMR (1H and 13C) and HRMS. When irradiated alternately with ultraviolet and visible light, 4a and 4b showed efficient photochromism in toluene, chloroform and DMSO, clearly implying a solvent-dependence feature. Moreover, excellent photoswitching behaviors were also observed in the poly(methyl methacrylate) (PMMA) film. The density functional theory (DFT) calculations suggested that strong Acceptor-Acceptor effect plays a dominative role in the efficient photochromic performance. Hence, this study will provide a useful guidance for developing high-performance DTE derivatives in multi-media.
Collapse
Affiliation(s)
- Sujun Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Hui Zhou
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Chunlin Xiong
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Lin Zhou
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Jingfang Han
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Xiaohan Cao
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Si Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China.
| |
Collapse
|
6
|
Zhang H, He C, Shen L, Tao W, Zhu J, Song J, Li Z, Yin J. Membrane-targeting amphiphilic AIE photosensitizer for broad-spectrum bacteria imaging and photodynamic killing of bacteria. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Ji G, Hou Q, Zhang J, Li X. Investigation of Triangle Terthiophene and Hydroxyphenylbenzothiazole Configured Fluorescent Dye with a Triple Bond Bridge. J Fluoresc 2023; 33:153-159. [PMID: 36318417 DOI: 10.1007/s10895-022-03049-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2023]
Abstract
A photochromic dye was constructed by incorporation of a carbon-carbon triple bond spaced triangle terthiophene skeleton and hydroxyphenylbenzothiazole. Regular photochromic behavior was investigated with alternated UV (254 nm) and visible light (≥ 400 nm) irradiation. The color of dye in solution can be cycled between pink and colorless. Additionally, the dye solution strongly fluoresces in THF with the absolute quantum yield (QY) being 0.56. When irradiation with 254 nm light, the emissive solution can be effectively quenched to photo-stationary sate (Φ = 0.05). An emission "on-off" cycle could be established based on the UV/visible light irradiation cycle. The photochromic dye also exhibits good photo- and thermal-stability at room temperature. The emission decay profile indicates typical single component character with the fluorescence lifetime being 6.68 ns. The emission color was determined by the CIE 1931 coordinates of x = 0.14, y = 0.25 in the blue region.
Collapse
Affiliation(s)
- Guangqian Ji
- School of Medicine, Huanghe Science and Technology University, Zhengzhou, Henan, People's Republic of China.,Henan Key Laboratory of Medical Polymer Materials Technology and Application, Tuoren Medical Device Research & Development Institute Co., Ldt., Xinxiang, Henan, People's Republic of China
| | - Qiaozhi Hou
- School of Medicine, Huanghe Science and Technology University, Zhengzhou, Henan, People's Republic of China
| | - Junna Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, People's Republic of China
| | - Xiaochuan Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, People's Republic of China.
| |
Collapse
|
8
|
Zhou T, Chen J, Wang T, Yan H, Xu Y, Li Y, Sun W. One-Dimensional Chain Viologen-Based Lanthanide Multistimulus-Responsive Materials with Photochromism, Photoluminescence, Photomagnetism, and Ammonia/Amine Vapor Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57037-57046. [PMID: 36519559 DOI: 10.1021/acsami.2c18143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, a series of novel multistimulus-responsive lanthanide coordination polymers {[LnL(H2O)4]Cl3·3H2O}n (Ln = Dy, Tb, Eu) constructed using a dicarboxylic acid viologen derivative L (L = N,N'-4,4'-bipyridiniodipropionate) and LnCl3·6H2O were prepared. All materials showed positive responses to UV light, and the photochromic phenomena accompanied by significant photoquenching of photoluminescence could be observed through a photoelectron transfer mechanism. Strikingly, the Dy analogue displayed photomagnetic behavior, as well as responded positively to small molecules of inorganic ammonia/organic amines. Furthermore, the good photoresponsive and ammonia/amine vapor-responsive properties of the Dy-based material were further fulfilled in dual-function papers involving erasable inkless printing and visual amine detection applications. This work aims to advance the development of multistimulus-responsive multifunctional materials incorporating viologen derivates and versatile lanthanide ions and further enriches the research in this field.
Collapse
Affiliation(s)
- Tengda Zhou
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China
| | - Jitun Chen
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China
| | - Tiantian Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China
| | - Han Yan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China
| | - Yingming Xu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China
| | - Wenbin Sun
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China
| |
Collapse
|