1
|
Newar UD, Kumar S, Borah A, Borra S, Manna P, Gokulnath S, Maurya RA. Access to Isoxazoles via Photo-oxygenation of Furan Tethered α-Azidoketones. J Org Chem 2024; 89:12378-12386. [PMID: 39171928 DOI: 10.1021/acs.joc.4c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Photocatalyst-free visible light-enabled direct oxygenation of furan-tethered α-azidoketones was studied. The reaction yielded various products depending on the substituents, with isoxazoles forming as the major products. The findings suggest that singlet oxygen was generated during the reaction and reacted with α-azidoketones in a [4 + 2] fashion to yield endoperoxides, which rearranged in multiple ways to generate isoxazoles. Some of the synthesized isoxazoles were evaluated as α-glucosidase inhibitors, and three of them 5bi, 5bj, and 5bl exhibited good activity with IC50 values of 454.57 ± 29.34, 147.84 ± 2.28, and 272.58 ± 42.06 μM, respectively, when compared with the standard drug acarbose (IC50 = 1224.33 ± 126.72 μM).
Collapse
Affiliation(s)
- Uma Devi Newar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Saurabh Kumar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
| | - Anupriya Borah
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Satheesh Borra
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Prasenjit Manna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Sabapathi Gokulnath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, India
| | - Ram Awatar Maurya
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| |
Collapse
|
2
|
Khan MEI, Cassini TL, Petrini M, Palmieri A. Synthesis of 3,5-disubstituted isoxazoles by domino reductive Nef reaction/cyclization of β-nitroenones. Org Biomol Chem 2024; 22:3299-3303. [PMID: 38577730 DOI: 10.1039/d4ob00232f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
β-Nitroenones can be efficiently converted into 3,5-disubstituted isoxazoles by using tin(II)chloride dihydrate and ethyl acetate as a reducing agent and solvent, respectively. Products are obtained in good yields and several functional groups are tolerated thanks to the mild reaction conditions.
Collapse
Affiliation(s)
| | - Tomas Lighuen Cassini
- University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, MC, Italy.
| | - Marino Petrini
- University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, MC, Italy.
| | - Alessandro Palmieri
- University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, MC, Italy.
| |
Collapse
|
3
|
Qiu D, Jiang C, Gao P, Yuan Y. Lewis acid-promoted direct synthesis of isoxazole derivatives. Beilstein J Org Chem 2023; 19:1562-1567. [PMID: 37915558 PMCID: PMC10616705 DOI: 10.3762/bjoc.19.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Isoxazole derivatives were synthesized via a one-pot method utilizing 2-methylquinoline derivatives as template substrates, sodium nitrite as a nitrogen-oxygen source, and solely using aluminum trichloride as the additive. This approach circumvents the need for costly or highly toxic transition metals and presents a novel pathway for the synthesis of isoxazole derivatives.
Collapse
Affiliation(s)
- Dengxu Qiu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chenhui Jiang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Pan Gao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yu Yuan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
4
|
Song W, Liu Y, Yan N, Wan JP. Tunable Key [3 + 2] and [2 + 1] Cycloaddition of Enaminones and α-Diazo Compounds for the Synthesis of Isomeric Isoxazoles: Metal-Controlled Selectivity. Org Lett 2023; 25:2139-2144. [PMID: 36946543 DOI: 10.1021/acs.orglett.3c00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The three-component reactions of enaminones, α-diazo esters/ketones, and t-butyl nitrite (TBN) for the switchable synthesis of isomeric isoxazoles have been realized. The catalysis with Cu(II) salt provides 3,4-disubsituted isoxazoles via [3 + 2] cycloaddition. On the other hand, the catalysis of Ag(I) with identical substrates leads to isomeric isoxazoles with reversed C3 and C4 substitution based on a key [2 + 1] cycloaddition.
Collapse
Affiliation(s)
- Wenli Song
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| |
Collapse
|
5
|
Rahaman A, Shinde RD, Bhadra S. Catalytic Methylene Insertion between Amines and Terminal Alkynes via C-N Bond Cleavage of N, N-Dimethylacetamide: A Unique Route to Propargylic Amines. J Org Chem 2023; 88:1884-1889. [PMID: 36646442 DOI: 10.1021/acs.joc.2c02584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A copper-based system allows for the methylene insertion between an amine and a milder nucleophile, including a terminal alkyne counterpart, via C-N bond cleavage of N,N-dimethylacetamide. The method gives an expedient access to propargylic amines in good to excellent yields. A wide-ranging substrate scope and late-stage functionalization of complex molecules make the protocol practically valuable.
Collapse
Affiliation(s)
- Ajijur Rahaman
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rupali Dasharath Shinde
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sukalyan Bhadra
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Zhang W, Wu Y, Song C. A copper-catalyzed oxidative intramolecular cyclization approach for the synthesis of mesoionic [1,2,3]triazo[5,1-a]isoquinoliums. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|