1
|
Ohno Y, Ehara T, Sato K, Hifumi R, Tomita I, Inagi S. Orthogonal Synthesis of Cationic Azatriphenylene Derivatives for Aggregation-Induced Emission (AIE) and Aggregation-Caused Quenching (ACQ) Property Switching. Org Lett 2025; 27:4964-4968. [PMID: 40320658 DOI: 10.1021/acs.orglett.5c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Herein, we report a divergent synthesis of cationic azatriphenylene derivatives using orthogonal control of thermal and electro-oxidative pyridination, which transforms the single precursor into controlled products with perfect selectivity. Simultaneously, two switchable reactions afford the corresponding pyridinium salts with different optical properties such as aggregation-induced emission (AIE) and aggregation-caused quenching (ACQ) effects.
Collapse
Affiliation(s)
- Yushi Ohno
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Tsukasa Ehara
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kosuke Sato
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Ryoyu Hifumi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
2
|
Xiao F, Xu X, Zhang J, Chen X, Ruan X, Wei Q, Zhang X, Huang Q. Rhodaelectro-Catalyzed Synthesis of Pyrano[3,4- b]indol-1(9 H)-ones via the Double Dehydrogenative Heck Reaction between Indole-2-carboxylic Acids and Alkenes. J Org Chem 2024; 89:17550-17561. [PMID: 39531595 DOI: 10.1021/acs.joc.4c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A rhodaelectro-catalyzed double dehydrogenative Heck reaction of indole-2-carboxylic acids with alkenes has been developed for the synthesis of pyrano[3,4-b]indol-1(9H)-ones. The weakly coordinating carboxyl group is utilized twice as a directing group to activate the C-H bonds throughout the reaction. This reaction precedes an acceptorless dehydrogenation under exogenous oxidant-free conditions in an undivided cell with a constant current.
Collapse
Affiliation(s)
- Fengyi Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xinlu Xu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Jiaqi Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Ximan Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xin Ruan
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qi Wei
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qiufeng Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
3
|
Wang Z, Xu H, Han X, Fan S, Zhu J. Manganese-Catalyzed Cycloalkene Ring Expansion Synthesis of Azaheterocycles. Org Lett 2024; 26:8559-8564. [PMID: 39356568 DOI: 10.1021/acs.orglett.4c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Herein, a Mn catalytic protocol has been developed for the cycloalkene ring expansion synthesis of azaheterocycles, allowing broad-substrate-scope access to pyridine and isoquinoline derivatives. The initial monoaddition of an azidyl radical to alkene and further as-generated C-radical addition to O2, followed by intramolecular rearrangement and aromatization, showcase a distinct Mn-catalyzed radical reactivity mode. The reaction features a short reaction time and a broad substrate scope, with applications demonstrated in complex structure elaboration and gram-scale vismodegib synthesis.
Collapse
Affiliation(s)
- Zhixin Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Hanxiao Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Xuanzhen Han
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Arandhara PJ, Chutia A, Biswas S, Saikia AK. A Lewis Acid-Catalyzed Cascade Synthesis of Fused N-Heterocycles from 2-Alkynylanilines and 2-Formylbenzonitriles: Unveiling Iminoisoindoloindolone and Its Derivatives. J Org Chem 2024; 89:12128-12142. [PMID: 39172136 DOI: 10.1021/acs.joc.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We herein reveal a streamlined synthesis of structurally fused 6-iminoisoindoloindolones via a meticulously orchestrated cascade reaction. This process seamlessly intertwines 2-alkynylaniline and 2-formylbenzonitrile under the catalytic influence of TMSOTf, giving rise to these compounds in remarkable yields that stand as a testament to the efficiency of our approach. Moreover, the versatility of this synthetic strategy extends far beyond mere synthesis, offering a gateway to the creation of both isoindoloindolone and unprecedented diphenylbenzopyrrolizinoisoquinolinone derivatives, thereby opening new horizons in the realm of chemical innovation. Furthermore, the strategic elegance of this synthetic methodology is underscored by its potential for scale-up production and applicability across diverse chemical contexts.
Collapse
Affiliation(s)
- Pallav Jyoti Arandhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Archana Chutia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Subhamoy Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
5
|
Zhuang W, Xiao F, Chen Y, Zhang X, Huang Q. Cascade Electrochemical Aerobic Oxygenation of 2-Substituted Indoles and Electrochemical [5 + 3] Annulation with Amidines: Access to Eight-Membered Benzo[1,3,5]triazocin-6(5 H)-ones. J Org Chem 2024; 89:4673-4683. [PMID: 38478890 DOI: 10.1021/acs.joc.3c02931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The cascade electrochemical C3-selective aerobic oxygenation of 2-substituted indoles and electrochemical [5 + 3] annulation with amidines through an undivided cell galvanostatic method employing molecular oxygen and "electricity" as green oxidants was developed. This protocol provides an efficient and direct approach to eight-membered benzo[1,3,5]triazocin-6(5H)-ones. Mechanistic studies suggested that two subsequent electrochemical processes both proceeded through radical pathways.
Collapse
Affiliation(s)
- Weihui Zhuang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Fengyi Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Yumei Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Xiaofeng Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Qiufeng Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| |
Collapse
|
6
|
Dai M, Zhang Y, Zhang X, Wang R, Wei W, Zhang Z, Liang T. Iodine-Mediated C2,3-H Aminoheteroarylation of Indoles. J Org Chem 2023; 88:15106-15117. [PMID: 37864558 DOI: 10.1021/acs.joc.3c01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
A metal-free one-pot oxidative cross-dehydrogenation coupling reaction for the formation of C-N/C-C bonds at the C2,3-positions of indoles with azoles and quinoxalinones has been developed. The proposed method has several notable features, including metal-free catalysis, the use of N-H free indoles as substrates, ease of operation, mild reaction conditions, and compatibility with a wide range of substrates.
Collapse
Affiliation(s)
- Maoyi Dai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yingying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ruiyi Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wanxing Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
7
|
Zhang J, Xu W, Zhuang W, Chen X, Zhang X, Huang Q. Rhodaelectro-Catalyzed Decarboxylative Cross-Dehydrogenative Coupling of Indole-3-carboxylic Acids and Olefins via Weakly Coordinating Carboxyl Groups. J Org Chem 2023; 88:15198-15208. [PMID: 37863844 DOI: 10.1021/acs.joc.3c01690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
A rhodaelectro-catalyzed C2-H selectively decarboxylative alkenylation of 3-carboxy-1H-indoles employing electricity as the traceless terminal oxidant has been accomplished. The weakly coordinating carboxyl group serves as the traceless directing groups. External oxidant-free in an undivided cell with constant current in aqueous solution ensures the decarboxylative C-H alkenylation to be viable and sustainable.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Weijie Xu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Weihui Zhuang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Ximan Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
8
|
Zhang Y, Han B, Gu X, Wang K, Liang S. Mn(OAc) 3-Promoted Sulfonation- ipso-Cyclization Cascade via the SO 3- Radical: The Synthesis of Spirocyclic Sulfonates. J Org Chem 2023; 88:14140-14155. [PMID: 37718492 DOI: 10.1021/acs.joc.3c01684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
A radical sulfonation-ipso-cyclization cascade promoted by Mn(OAc)3·2H2O using functionalized alkynes or alkenes and potassium metabisulfite (K2S2O5) is reported. A total of 30 spirocyclic sulfonates were synthesized under mild conditions. We also demonstrate a modular synthesis approach in multiple steps for the preparation of various azaspiro[4,5]-trienone-based sulfonamides and sulfonate esters.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Bingxu Han
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Xin Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Kaixuan Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Shuai Liang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| |
Collapse
|
9
|
Teng QH, Lu FL, Wang K, Zhou LY, Li DP. Chemodivergent Photocatalyzed Heterocyclization of Hydrazones and Isothiocyanates for the Selectivity Synthesis of 2-Amino-1,3,4-thiadiazoles and 1,2,4-Triazole-3-thiones. J Org Chem 2023. [PMID: 37141629 DOI: 10.1021/acs.joc.3c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A photocatalytic chemodivergent reaction for the selectivity formation of C-S and C-N bonds in a controlled manner was proposed. The reaction medium, either neutral or acidic, is critical to dictate the formation of 2-amino-1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones from isothiocyanates and hydrazones. This is a practical protocol to achieve the chemoselectivity under mild and metal-free conditions.
Collapse
Affiliation(s)
- Qing-Hu Teng
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Feng-Lai Lu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Li-Ya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Dian-Peng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|