1
|
Li F, Yang Q, Li H, Cui YZ, Wang YB. Silver(I)-Promoted [3 + 3]-Cycloaddition of 2-(2-Enynyl)quinolines with N'-(2-Alkynylbenzylidene)hydrazides. J Org Chem 2024; 89:11567-11575. [PMID: 39087584 DOI: 10.1021/acs.joc.4c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
An effective and straightforward Ag(I)-mediated annulation of 2-(2-enynyl)quinolines and N'-(2-alkynylbenzylidene)hydrazides was developed, forging various synthetically challenging 17bH-isoquinolino[2'',1'':1',6']pyridazino[4',5':3,4]pyrrolo[1,2-a]quinolines, including different nitrogen-containing fused rings, in moderate to excellent yields. This one-pot cycloaddition strategy features exclusive regioselectivity, high atom economy, and broad substrate scope under mild conditions. The practicality and reliability of this cycloaddition reaction was demonstrated by a successful scale-up synthesis.
Collapse
Affiliation(s)
- Feng Li
- College of Chemistry and Molecular Science, Henan University, Kaifeng 475004, China
| | - Qing Yang
- College of Chemistry and Molecular Science, Henan University, Kaifeng 475004, China
| | - He Li
- College of Chemistry and Molecular Science, Henan University, Kaifeng 475004, China
| | - Yan-Zhao Cui
- College of Chemistry and Molecular Science, Henan University, Kaifeng 475004, China
| | - Yan-Bo Wang
- College of Chemistry and Molecular Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Ramarao J, Rambabu M, Suresh S. NHC-Catalyzed Formal [4 + 2] Annulation of o-Formyl-Tethered Michael Acceptors and Ynones to Access Highly Functionalized Naphthalene Derivatives. Org Lett 2024; 26:1780-1786. [PMID: 38411544 DOI: 10.1021/acs.orglett.3c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Herein we demonstrate a novel organocatalytic method to access multifunctionalized naphthalenes via an NHC-catalyzed reaction of ynones and o-formyl-tethered Michael acceptors. The presented method proceeds through an intermolecular Stetter reaction-cyclization-aromatization cascade and represents a rare example of organocatalytic benzannulation for the synthesis of substituted arenes by using ynone as a two-carbon synthon. The current method has broad substrate scope; postsynthetic transformations and gram-scale syntheses highlight the practicality of the displayed methodology.
Collapse
Affiliation(s)
- Jakkula Ramarao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Molugumati Rambabu
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Surisetti Suresh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
3
|
Li F, Yang Q, Liu MY, An PX, Du YL, Wang YB. Ag(I)-Mediated Annulation of 2-(2-Enynyl)pyridines and Propargyl Amines to Access 1-(2 H-Pyrrol-3-yl)indolizines. J Org Chem 2024; 89:304-312. [PMID: 38126126 DOI: 10.1021/acs.joc.3c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An effective Ag(I)-mediated annulation of 2-(2-enynyl)pyridines and propargyl amines was developed, unexpectedly affording a broad range of functionalized 1-(2H-pyrrol-3-yl)indolizines in moderate to excellent yields. The developed method is characterized by operational simplicity, ready availability of starting materials, high regioselectivity, and broad substrate scope under mild reaction conditions. The Ag(I)-promoted cyclization of 2-(2-enynyl)pyridines and propargyl amines possibly results in the formation of the spiroindolizine, the ring-opening rearrangement of which may give the 1-(2H-pyrrol-3-yl)indolizine. Furthermore, a gram-scale reaction and synthetic transformations are also studied.
Collapse
Affiliation(s)
- Feng Li
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Qing Yang
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Ming-Yue Liu
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Pei-Xuan An
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Ya-Long Du
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| | - Yan-Bo Wang
- College of Chemistry and Molecular Science, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
4
|
Bak JM, Song M, Shin I, Lim HN. A deconstruction-reconstruction strategy to access 1-naphthol derivatives: application to the synthesis of aristolactam scaffolds. Org Biomol Chem 2023; 21:8936-8941. [PMID: 37916683 DOI: 10.1039/d3ob01603j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A deconstruction-reconstruction strategy for the synthesis of multisubstituted polycyclic aromatic hydrocarbons (PAHs) is delineated herein. The deconstruction step enables the synthesis of o-cyanomethylaroyl fluorides that are bifunctional substrates holding both a pro-nucleophile and an electrophile. The construction step involves a formal [4 + 2] benzannulation using o-cyanomethylaroyl fluorides and active methylenes. The utility of this synthetic method is also demonstrated by the synthesis of a tetracyclic aristolactam derivative.
Collapse
Affiliation(s)
- Jeong Min Bak
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Moonyeong Song
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Inji Shin
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
5
|
Chen LL, Li F, Yang Q, Ye YF, Yang WW, Wang YB. Base-Promoted Decarboxylative Annulation of Methyl 2-(2-Bromophenyl)acetates and Ynones to Access Benzoxepines. J Org Chem 2023. [PMID: 36799925 DOI: 10.1021/acs.joc.2c02870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A simple and efficient base-mediated decarboxylative annulation of ynones with methyl 2-(2-bromophenyl)acetates has been developed. A broad range of benzoxepines were prepared with a broad substrate scope and high regioselectivity in moderate to excellent yields under transition-metal-free conditions. This method proceeds through a tandem [2 + 4] annulation, ring-opening decarboxylative reaction, and the intramolecular nucleophilic aromatic substitution reaction. Additionally, the key intermediates were successfully obtained and characterized unambiguously by single-crystal X-ray crystallography, which could favorably support a decarboxylative annulation mechanism. Furthermore, gram-scale reaction and synthetic applications for the further functionalization are also studied.
Collapse
Affiliation(s)
- Lu-Lu Chen
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Feng Li
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Qing Yang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Ya-Fang Ye
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Wan-Wan Yang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yan-Bo Wang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Ye YF, Li F, Chen JL, An ZQ, Zhang GY, Wang YB. Transition-Metal-Free Synthesis of 3-Acyl Chromones by the Tandem Reaction of Ynones and Methyl Salicylates. J Org Chem 2022; 87:14005-14015. [PMID: 36210518 DOI: 10.1021/acs.joc.2c01637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A facile and effective tandem reaction of ynones and methyl salicylates was developed to obtain a broad range of 3-acyl chromones in moderate-to-excellent yields. This protocol underwent a Michael addition and cyclization process, which exhibited easily accessible substrates, broad substrate scope, and high regioselectivity under mild and transition-metal-free conditions. Moreover, gram-scale reaction and further chemical transformation of the products were also further studied.
Collapse
Affiliation(s)
- Ya-Fang Ye
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Feng Li
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jia-Le Chen
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zi-Qian An
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Gui-Ying Zhang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yan-Bo Wang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|