1
|
Huang Z, Wu H, Geng M, Kuang J, Ma Y. Sodium Iodide-Promoted Construction of Fully Substituted 4-Sulfenyl-5-aminopyrazole Derivatives. J Org Chem 2025. [PMID: 40399243 DOI: 10.1021/acs.joc.5c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Transition-metal-free synthesis of diversely substituted 4-sulfenyl-5-aminopyrazoles was developed under mild conditions through NaI-mediated three-component reaction of β-ketonitriles, disulfides, and hydrazines. The pyrazole products were constructed via consecutive cleavage of C-O and S-S bonds and recombination of C-N and C-S bonds. The methodology features broad substrate scope, mild transition-metal-free conditions, and easy manipulation.
Collapse
Affiliation(s)
- Ziru Huang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Hangjin Wu
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Meiqi Geng
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Jinqiang Kuang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Taizhou 318000, Zhejiang, China
| |
Collapse
|
2
|
Perumal K, Palanisamy N, Hemamalini V, Shankar B, Shanthi M, Ramesh S. Unveiling Na 2-Eosin Y-Catalyzed and Water-Assisted Visible-Light Activation of Oxygen Molecules for the Dicarbonylation of Pyrazole Amines. J Org Chem 2024; 89:13556-13574. [PMID: 39255784 DOI: 10.1021/acs.joc.4c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A novel approach employing visible light-mediated activation of triplet oxygen molecules has been established. The reaction occurs at room temperature between pyrazole amine and phenylglyoxal monohydrate in the presence of Na2-eosin Y. Water played the dual role of solvent and reagent/additive. Photoactivation of triplet oxygen species was used to demonstrate the initiation of the hydrogen atom transfer (HAT) process. The conversion of the reaction mixture was found to be dependent on the amount of water present. Control experiments confirmed the importance of light, the photocatalyst, oxygen, the base, and water. The process tolerated various substitutions in both pyrazole amine and phenylglyoxal derivatives, enabling the synthesis of various dicarbonylpyrazole amines 15 and pyrazolooxazine derivatives 16 in moderate to good yields. 2 equiv of phenylglyoxal 10 gave a different reaction pathway, yielding highly diastereoselective pyrazolooxazine derivatives, confirmed by X-ray diffraction analysis. Collectively, this sustainable and environmentally friendly synthetic technique offers a promising method for the efficient preparation of pyrazole-based heterocyclic compounds. The high regioselectivity observed during the formation of trans-tetrahydropyrazolo[3,4-d][1,3]oxazine has been clarified through computational methods. These investigations emphasize the underlying factors and mechanisms that encourage the formation of this specific product, providing valuable insights into the reaction's selectivity and efficiency.
Collapse
Affiliation(s)
- Karuppaiah Perumal
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Nivedhitha Palanisamy
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Vijayakumar Hemamalini
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai, Tamil Nadu 625 015, India
| | - Markabandhu Shanthi
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Subburethinam Ramesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| |
Collapse
|
3
|
Zhang W, Zou Q, Wang Q, Jin D, Jiang S, Qian P. Electrocatalytic C-H/S-H Coupling of Amino Pyrazoles and Thiophenols: Synthesis of Amino Pyrazole Thioether Derivatives. J Org Chem 2024; 89:5434-5441. [PMID: 38581391 DOI: 10.1021/acs.joc.3c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
A mild method for the C-H/S-H coupling of pyrazol-5-amines and thiophenols was developed via electrochemistry, giving diverse amino pyrazole thioether derivatives in 37-98% yields. This electrochemical reaction is sustainable and an atom-efficient approach with good functional group tolerance and scalability by avoiding metal and external chemical oxidants.
Collapse
Affiliation(s)
- Wenbao Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Experimental and Training Management Center, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Quan Zou
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Qian Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Dongsheng Jin
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Shan Jiang
- Experimental and Training Management Center, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Peng Qian
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
4
|
Annes SB, Perumal K, Anandhakumar K, Shankar B, Ramesh S. Transition-Metal-Free Dehydrogenation of Benzyl Alcohol for C-C and C-N Bond Formation for the Synthesis of Pyrazolo[3,4- b]pyridine and Pyrazoline Derivatives. J Org Chem 2023; 88:6039-6057. [PMID: 37125502 DOI: 10.1021/acs.joc.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A series of cascade reactions that produce a range of functionalized aromatic heterocyclic compounds with pyrazole/pyrazoline cores have been developed. The method relies on a metal-free dehydrogenative process to produce in-situ benzaldehydes. The produced benzaldehyde was then allowed to react with some other substances, including acetophenone, pyrazole amine, and phenylhydrazine. The intermediate produced from these substrates underwent several chemical processes, including electrocyclization, the aza-Diels-Alder reaction, and the formation of intramolecular C-N bonds. These positive outcomes would open up the possibility of producing biologically active pyrazolo[3,4-b]pyridine and pyrazoline derivatives through a variety of possible reactions.
Collapse
Affiliation(s)
- Sesuraj Babiola Annes
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Karuppaiah Perumal
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Kalaiselvan Anandhakumar
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai 625 015, Tamil Nadu, India
| | - Subburethinam Ramesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|