1
|
Babar J, Ahmad S, Parveen B, Ali KG, Mushtaq A, Zahoor AF, Ahmad R, Mansha A, Irfan A. Exploring the Synthetic Potential of Horner-Wadsworth-Emmons Reaction Toward the Synthesis of Polyketide Based Natural Products: A Review. Top Curr Chem (Cham) 2025; 383:20. [PMID: 40286003 DOI: 10.1007/s41061-025-00504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
The Horner-Wadsworth-Emmons (HWE) reaction is a commonly used and reliable phenomenon for carbon-carbon olefination in organic chemistry, carried out by treating aldehyde or ketones with phosphonate esters to afford the substituted alkenes. HWE reaction has also been observed to be involved in the stereo-controlled syntheses of naturally occurring compounds that acquire pharmaceutical profiles against various diseases. In this article, recent implementations of Horner-Wadsworth-Emmons reaction towards the notable total syntheses of naturally occurring compounds such as polyketides have been summarized.
Collapse
Affiliation(s)
- Javeria Babar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Aqsa Mushtaq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Raheel Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| |
Collapse
|
2
|
Munir R, Zahoor AF, Anjum MN, Mansha A, Irfan A, Chaudhry AR, Irfan A, Kotwica-Mojzych K, Glowacka M, Mojzych M. Yamaguchi esterification: a key step toward the synthesis of natural products and their analogs-a review. Front Chem 2024; 12:1477764. [PMID: 39464384 PMCID: PMC11503016 DOI: 10.3389/fchem.2024.1477764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
The Yamaguchi reagent, based on 2,4,6-trichlorobenzoyl chloride (TCBC) and 4-dimethylaminopyridine (DMAP), is an efficient tool for conducting the intermolecular (esterification) reaction between an acid and an alcohol in the presence of a suitable base (Et3N or i Pr2NEt) and solvent (THF, DCM, or toluene). The Yamaguchi protocol is renowned for its ability to efficiently produce a diverse array of functionalized esters, promoting high yields, regioselectivity, and easy handling under mild conditions with short reaction times. Here, the recent utilization of the Yamaguchi reagent was reviewed in the synthesis of various natural products such as macrolides, terpenoids, polyketides, peptides, and metabolites.
Collapse
Affiliation(s)
- Ramsha Munir
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Katarzyna Kotwica-Mojzych
- Department of Basic Sciences, Department of Histology, Embriology and Cytophysiology, Medical University of Lublin, Lublin, Poland
| | - Mariola Glowacka
- Faculty of Health Sciences Collegium Medicum, The Mazovian Academy in Plock, Płock, Poland
| | - Mariusz Mojzych
- Faculty of Health Sciences Collegium Medicum, The Mazovian Academy in Plock, Płock, Poland
| |
Collapse
|
3
|
Ghosh AK, Gulliver JP. Total Syntheses of Strasseriolide A and Strasseriolide B, Potent Antimalarial Agents. J Org Chem 2024; 89:12331-12340. [PMID: 39120520 DOI: 10.1021/acs.joc.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
We describe the convergent total syntheses of strasseriolides A and B, which are potent antimalarial agents recently isolated from an unnamed plant found in a remote region of New Zealand. Both natural products exhibited potent activity against malaria parasite, Plasmodium falciparum. The synthesis involved asymmetric syn-aldol, asymmetric alkylation, and asymmetric Johnson-Claisen rearrangement to set six of the seven chiral centers of strasseriolide B. The synthesis also highlights the formation of an 18-membered macrolactone from a diacid by using a Yamaguchi macrolactonization protocol. Other key transformations involved Grubbs' cross-metathesis, selective 1,4-reduction, hydrostannylation reaction, and NHK coupling reaction. The convergent synthesis of strasseriolide A required 27 total synthetic steps and 16 longest linear steps from known readily available intermediates.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - John P Gulliver
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Isak D, Schwartz LA, Schulthoff S, Pérez-Moreno G, Bosch-Navarrete C, González-Pacanowska D, Fürstner A. Collective and Diverted Total Synthesis of the Strasseriolides: A Family of Macrolides Endowed with Potent Antiplasmodial and Antitrypanosomal Activity. Angew Chem Int Ed Engl 2024; 63:e202408725. [PMID: 38864359 DOI: 10.1002/anie.202408725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
The strasseriolide macrolides show promising in vitro and in vivo activities against P. falciparum and T. cruzi, the parasites causing malaria and Chagas disease, respectively. However, the as yet poor understanding of structure/activity relationships and the fact that one family member proved systemically toxic for unknown reasons render a more detailed assessment of these potential lead compounds difficult. To help overcome these issues, a collective total synthesis was devised. The key steps consisted of a ring closing alkyne metathesis (RCAM) reaction to forge a common macrocyclic intermediate followed by a hydroxy-directed ruthenium catalyzed trans-hydrostannation of the propargyl alcohol site thus formed. The resulting alkenyltin derivative served as the central node of the synthesis blueprint, which could be elaborated into the natural products themselves as well as into a set of non-natural analogues according to the concept of diverted total synthesis. The recorded biological data confirmed the potency of the compounds and showed the lack of any noticeable cytotoxicity. The "northern" allylic alcohol subunit was recognized as an integral part of the pharmacophore, yet it provides opportunities for chemical modification.
Collapse
Affiliation(s)
- Daniel Isak
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Leyah A Schwartz
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Saskia Schulthoff
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Guiomar Pérez-Moreno
- Instituto de Parasitologia y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Avenida del Conocimiento 17 18016, Armilla, Granada, Spain
| | - Cristina Bosch-Navarrete
- Instituto de Parasitologia y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Avenida del Conocimiento 17 18016, Armilla, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitologia y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas, Avenida del Conocimiento 17 18016, Armilla, Granada, Spain
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
5
|
Barik R, Nanda S. Asymmetric total synthesis of humulane sesquiterpenoids alashanoids B, C, E, and F and 2,9-humuladien-6-ol-8-one. Org Biomol Chem 2024; 22:4478-4487. [PMID: 38625093 DOI: 10.1039/d4ob00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Naturally occurring sesquiterpenes having humulane frameworks are structurally intriguing and possess significant biological profiles. Asymmetric synthesis of the alashanoids B, C, E, and F and 2,9-humuladien-6-ol-8-one is achieved for the first time through a linear synthetic strategy. Intramolecular late-stage Nozaki-Hiyama-Kishi (NHK) coupling is employed to access the eleven-membered macrocyclic core present in the target molecules. The NHK precursors are accessed using the Evans and non-Evans syn and anti-aldol reaction as a key transformation. X-ray and ECD analysis reconfirmed the synthesized compounds' structures and chirotopical properties.
Collapse
Affiliation(s)
- Rasmita Barik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Samik Nanda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
6
|
Sahana MH, Paul D, Sharma H, Goswami RK. Total Synthesis of Antibacterial Macrolide Sorangiolide A. Org Lett 2023; 25:7827-7831. [PMID: 37856450 DOI: 10.1021/acs.orglett.3c03066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A convergent route for the asymmetric total synthesis of antibacterial macrolide sorangiolide A has been developed for the first time. The key feature of this synthesis includes Krische iridium-catalyzed anti-diastereoselective carbonyl crotylation, Crimmins acetate aldol, Yamaguchi esterification, Julia-Kocienski olefination, Horner-Wadsworth-Emmons olefination, and ring-closing metathesis. The origin of the low intensity of the 13C{1H} NMR signals of the C1 and C2 centers of the natural product has been investigated, disclosing possible forms of existence for the natural product in the solution phase.
Collapse
Affiliation(s)
- Moinul Haque Sahana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| | - Debobrata Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| | - Himangshu Sharma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|