1
|
Zhang Z, Li Y, Zhang X, Tan J, Du H, Chen N. Visible-light induced photocatalyst-free synthesis of β-enaminones. Org Biomol Chem 2025; 23:4743-4750. [PMID: 40260470 DOI: 10.1039/d5ob00286a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
An environmentally friendly and efficient synthesis of β-enaminones through photo-acylation of vinyl azides is described herein, utilizing 4-acyl-1,4-dihydropyridines (4-acyl-1,4-DHPs) as dual-function reagents. These reagents simultaneously serve as reductants and radical initiators. The method accommodates a broad range of vinyl azides, demonstrating excellent functional group tolerance and enabling potential application. Comprehensive mechanistic exploration was conducted employing TEMPO trapping, on-off experiments, and isotopic labelling studies. Key to our understanding was the integration of dual-parameter Hammett analysis and kinetic isotope effect (KIE) studies. The Hammett analysis, using quadratic linear regression with dual radical parameters, σmb and σjj·, highlighted the involvement of radical mechanisms and anionic intermediates. In conjunction with KIE studies, these analyses revealed that the rate-limiting step in the transformation is the single-electron reduction of the conjugated enamine radical to the corresponding anion. This finding offers valuable insights into the reaction dynamics and could guide the development of related synthetic strategies.
Collapse
Affiliation(s)
- Zhiqin Zhang
- Department of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yuxuan Li
- Department of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xirui Zhang
- Department of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Jiajing Tan
- Department of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Hongguang Du
- Department of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Ning Chen
- Department of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
2
|
Gupta S, Babu MA, Kumar R, Singh TG, Goel A, Rastogi S, Sharma P, Tyagi Y, Goel KK, Kumar B. Exploring USFDA-Approved Imidazole-Based Small Molecules in Drug Discovery: A Mini Perspective. Chem Biodivers 2025:e202403020. [PMID: 40062971 DOI: 10.1002/cbdv.202403020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
In the present work, we have explored the importance of the imidazole ring and its importance in drug discovery, citing the key approvals in the present decade (2013-2024). The pharmacological attribution for the approved drugs revealed that out of 20 approved drugs, 45% of the approvals were made as anti-infectives, followed by approvals under the category of genetic and metabolic disorders, sexual endocrine disorders, anticancer, and to treat blood pressure, gastrointestinal disorders, and neurological conditions. Most approved drugs were dispensed through solid dosage forms (13) and thus had predominantly oral routes beside others. The metabolism pattern revealed that the drugs undergo metabolism via the involvement of multiple enzymes, where CYP3A4 and CYP3A5 were the core enzymes. The excretion pattern of these drugs revealed that the drugs are majorly excreted via the fecal route. The chemical analysis showed that pyrrolidine/pyrrole was the major heterocycle in the approved drugs, followed by the indole ring in the hybridization. Considering the substitution pattern, most drugs possessed amide, amines, and fluoro group as the functional substitution with the 2,4-substitution pattern seen in most approved drugs. Besides this, the three approved drugs were found to possess chiral centers and exhibit chirality. The article also expanded to cover the synthetic routes and metabolic routes for this versatile ring system and case studies for its utility to serve as bioisostere in drug discovery. Furthermore, this article also presents the receptor-ligand interactions of imidazole-based drugs with various target receptors. The present article is, therefore, put forth to assist medicinal chemists and chemists working in drug discovery of this versatile ring system.
Collapse
Affiliation(s)
- Sonali Gupta
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University), Haridwar, India
- Department of Chemistry, Gurukul Kangri (Deemed to be University), Haridwar, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
| | - Thakur Gurjeet Singh
- Centre of Research Impact and Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Anjali Goel
- Department of Chemistry, Gurukul Kangri (Deemed to be University), Haridwar, India
| | - Sameer Rastogi
- School of Pharmacy, Noida International University, Greater Noida, India
| | - Pankaj Sharma
- Smt Tarawati Institute of Biomedical and Allied Sciences, Roorkee, India
| | - Yogita Tyagi
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Kapil Kumar Goel
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University), Haridwar, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, Uttarakhand, India
| |
Collapse
|
3
|
Bera D, Sarkar R, Dhar T, Saha P, Ghosh P, Mukhopadhyay C. DMSO promoted catalyst-free oxidative C-N/C-O couplings towards synthesis of imidazoles and oxazoles. Org Biomol Chem 2024; 22:3684-3692. [PMID: 38624070 DOI: 10.1039/d4ob00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Dimethyl sulfoxide (DMSO)-promoted catalyst-free oxidative C-N coupling and C-O coupling under oxidant-free conditions are outlined. This protocol is operationally simple and leads to various functionalized substituted imidazoles or oxazoles in good yields. To date, a very limited number of oxidation protocols have been established, where DMSO acts solely as a catalyst or an oxidant or both. In this report, DMSO is not only used as a C-N/C-O coupling agent but is also used as the oxidant required for these oxidative transformations. Hence, our demonstrated DMSO-promoted catalyst-free coupling transformation has the ability to lead to a new dimension in the field of oxidative coupling.
Collapse
Affiliation(s)
- Debasish Bera
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Rajib Sarkar
- Department of Chemistry, Prabhu Jagatbandhu College, Jhorehat, Andul-Mouri, Howrah-711302, India
| | - Tiyasa Dhar
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Pinaki Saha
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-700103, India
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-700103, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| |
Collapse
|
4
|
Zhao MN, Yang ZM, Li LQ. DMF as an amine source: iron-catalyzed cyclization of 2 H-azirines to imidazoles. Chem Commun (Camb) 2024. [PMID: 38258986 DOI: 10.1039/d3cc06147g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A novel method has been developed for the synthesis of 1-methyl-4,5-diaryl-1H-imidazoles through Fe(II)-catalyzed cyclization of 2H-azirines and N,N-dimethylformamide (DMF) as an amine source. This transformation involves the cleavage of C-N and CN double bonds and the construction of new C-N and CN double bonds. The reaction has readily available starting materials, a wide range of substrates and mild reaction conditions. In addition, the reaction also facilitated the convenient synthesis of 1-methyl-2,4,5-triaryl-1H-imidazoles.
Collapse
Affiliation(s)
- Mi-Na Zhao
- College of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi'an, Shaanxi 710100, P. R. China.
| | - Zi-Mo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Lian-Qing Li
- College of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi'an, Shaanxi 710100, P. R. China.
| |
Collapse
|