1
|
Wang J, Yang E, Liu W, Zhang S, Shi Y. Pd-catalyzed efficient synthesis of 3-formylindole derivatives with diaziridinone. Org Biomol Chem 2025; 23:5006-5015. [PMID: 40304053 DOI: 10.1039/d5ob00246j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
This work describes an efficient Pd-catalyzed annulation process of acetal alkynes, aryl iodides, and di-t-butyldiaziridinone to afford a variety of 3-formylindoles and their derivatives. The reaction likely proceeds through a regioselective Heck reaction followed by aryl C-H activation to form a pallada(II)cycle, which is bisaminated with diaziridinone via a pallada(IV)cycle. The utility of the current reaction process is demonstrated by the facile synthesis of bioactive indoles.
Collapse
Affiliation(s)
- Jianjun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China.
| | - E Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China.
| | - Wei Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China.
| | - Shiwei Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China.
| | - Yian Shi
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Yan Q, Nan J, Cao R, Zhu L, Liu S, Liang C, Zhang C. Substrate-Controlled Divergent Reductive Cyclization of 2-Arylanilines Using CO 2 as a Switching Reagent. Org Lett 2025; 27:510-516. [PMID: 39791237 DOI: 10.1021/acs.orglett.4c04538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Capturing CO2 is highly valued in the field of organic synthesis, especially underdeveloped dual-CO2 conversion. In this study, we detail a novel reductive cyclization of 2-indolylanilines with dual CO2 as a difunctional reagent in the presence of PMHS [poly(methylhydrosiloxane)], delivering methyl-substituted quinoxalines. Furthermore, another chemoselective cyclization with 2-pyrrolylanilines is also realized by converting mono-CO2. Mechanistic investigations shed light upon the fact that this substrate-controlled divergence mainly depends on the formation of N-diacylative intermediates.
Collapse
Affiliation(s)
- Qiang Yan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiang Nan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
| | - Rui Cao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lanxin Zhu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shilei Liu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chengyuan Liang
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
| | - Chen Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Cao VD, Joung S. Synthesis and utility of N-boryl and N-silyl enamines derived from the hydroboration and hydrosilylation of N-heteroarenes and N-conjugated compounds. Front Chem 2024; 12:1414328. [PMID: 38911995 PMCID: PMC11190178 DOI: 10.3389/fchem.2024.1414328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
Catalytic hydroboration and hydrosilylation have emerged as promising strategies for the reduction of unsaturated hydrocarbons and carbonyl compounds, as well as for the dearomatization of N-heteroarenes. Various catalysts have been employed in these processes to achieve the formation of reduced products via distinct reaction pathways and intermediates. Among these intermediates, N-silyl enamines and N-boryl enamines, which are derived from hydrosilylation and hydroboration, are commonly underestimated in this reduction process. Because these versatile intermediates have recently been utilized in situ as nucleophilic reagents or dipolarophiles for the synthesis of diverse molecules, an expeditious review of the synthesis and utilization of N-silyl and N-boryl enamines is crucial. In this review, we comprehensively discuss a wide range of hydrosilylation and hydroboration catalysts used for the synthesis of N-silyl and N-boryl enamines. These catalysts include main-group metals (e.g., Mg and Zn), transition metals (e.g., Rh, Ru, and Ir), earth-abundant metals (e.g., Fe, Co, and Ni), and non-metal catalysts (including P, B, and organocatalysts). Furthermore, we highlight recent research efforts that have leveraged these versatile intermediates for the synthesis of intriguing molecules, offering insights into future directions for these invaluable building blocks.
Collapse
Affiliation(s)
| | - Seewon Joung
- Department of Chemistry, Inha University, Incheon, Republic of Korea
| |
Collapse
|
4
|
Li S, Nakahara S, Adachi T, Murata T, Takaishi K, Ema T. Skeletal Formation of Carbocycles with CO 2: Selective Synthesis of Indolo[3,2- b]carbazoles or Cyclophanes from Indoles, CO 2, and Phenylsilane. J Am Chem Soc 2024; 146:14935-14941. [PMID: 38722086 DOI: 10.1021/jacs.4c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The catalytic reactions of indoles with CO2 and phenylsilane afforded indolo[3,2-b]carbazoles, where the fused benzene ring was constructed by forming two C-H bonds and four C-C bonds with two CO2 molecules via deoxygenative conversions. Nine-membered cyclophanes made up of three indoles and three CO2 molecules were also obtained, where the cyclophane framework was constructed by forming six C-H bonds and six C-C bonds. These multicomponent cascade reactions giving completely different carbocycles were switched simply by choosing the solvent, acetonitrile or ethyl acetate.
Collapse
Affiliation(s)
- Sha Li
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Shoko Nakahara
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Taishin Adachi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Takumi Murata
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Wu J, Niu J, Hou L, Cheng S, Xie R, Zhu N. Highly Efficient Thiolate-Based Ionic Liquid Catalysts for Reduction of CO 2: Selective N-Functionalization of Amines to Form N-Formamides and N-Methylamines. Chemistry 2024:e202304315. [PMID: 38581408 DOI: 10.1002/chem.202304315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Developing efficient catalysts to convert CO2 into value-added chemicals is valuable for reducing carbon emissions. Herein, a kind of novel thiolate-based ionic liquid with sulfur as the active site was designed and synthesized, which served as highly efficient catalyst for the reductive N-functionalization of CO2 by amines and hydrosilane. By adjusting the CO2 pressure, various N-formamides and N-methylamines were selectively obtained in high yields. Remarkably, at the catalyst loading of 0.1 mol %, the N-formylation reaction of N-methylaniline exhibited an impressive turnover frequency (TOF) up to 600 h-1, which could be attributed to the roles of the ionic liquids in activating hydrosilane and amine. In addition, control experiments and NMR monitoring experiments provided evidence that the reduction of CO2 by hydrosilane yielded formoxysilane intermediates that subsequently reacted with amines to form N-formylated products. Alternatively, the formoxysilane intermediates could further react with hydrosilane and amine to produce 4-electron-reduced aminal products. These aminal products served as crucial intermediates in the N-methylation reactions.
Collapse
Affiliation(s)
- Jiakai Wu
- College of Chemical Engineering, Inner Mongolia University of Technology, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
- Key Laboratory of CO2 Resource Utilization at, Universities of Inner Mongolia Autonomous Region, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
| | - Junping Niu
- College of Chemical Engineering, Inner Mongolia University of Technology, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
- Key Laboratory of CO2 Resource Utilization at, Universities of Inner Mongolia Autonomous Region, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
| | - Lu Hou
- College of Chemical Engineering, Inner Mongolia University of Technology, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
- Key Laboratory of CO2 Resource Utilization at, Universities of Inner Mongolia Autonomous Region, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
| | - Siliu Cheng
- College of Chemical Engineering, Inner Mongolia University of Technology, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
- Key Laboratory of CO2 Resource Utilization at, Universities of Inner Mongolia Autonomous Region, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
| | - Ruijun Xie
- College of Chemical Engineering, Inner Mongolia University of Technology, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
- Key Laboratory of CO2 Resource Utilization at, Universities of Inner Mongolia Autonomous Region, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
| | - Ning Zhu
- College of Chemical Engineering, Inner Mongolia University of Technology, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
- Key Laboratory of CO2 Resource Utilization at, Universities of Inner Mongolia Autonomous Region, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Aimin street 49, 010051, Xincheng District, Hohhot, P. R. China
| |
Collapse
|
6
|
Yan Y, Hao J, Xie F, Han F, Jing L, Han P. Magnesium-Mediated Umpolung Carboxylation of p-Quinone Methides with CO 2. J Org Chem 2023; 88:14640-14648. [PMID: 37773013 DOI: 10.1021/acs.joc.3c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Magnesium-mediated reductive carboxylation of p-QMs with CO2 via an Umpolung strategy has been developed, which can be used for the preparation of various aryl acetic acids. This protocol featured high atom economy, mild conditions, and operational simplicity. The creation of this Umpolung carboxylation of p-QMs will unprecedentedly extend the application of p-QMs to nucleophilic reagents.
Collapse
Affiliation(s)
- Yunying Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jianjun Hao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Fenfen Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|