1
|
Sun J, Zhang S, Wang R, Lv Z, Wu XX. Palladium-catalyzed sequential [3+2] cyclization/C-H activation of o-iodostyrenes with cyclopropenones as C2 synthons. Chem Commun (Camb) 2025; 61:8200-8203. [PMID: 40336453 DOI: 10.1039/d5cc01189b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Herein, we report a novel palladium-catalyzed synthesis of diverse dihydroindeno[2,1-a]indenes by the reaction of o-iodostyrenes with cyclopropenones. This protocol involves a [3+2] cyclization/C-H activation sequence, forming a C(sp2)-C(sp2) and two C(sp2)-C(sp3) bonds. This procedure represents an innovative method for the assembly of tetracyclic dihydroindeno-indenes utilizing cyclopropenones as a new C2 synthon.
Collapse
Affiliation(s)
- Jie Sun
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Shaojie Zhang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Ruixue Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Zeng Lv
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Xin-Xing Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| |
Collapse
|
2
|
Li F, Yang D, Qu H, Zhu M, Zheng S. Phosphine-catalyzed reaction of cyclopropenones with water: divergent synthesis of highly functionalized γ-butenolides, trisubstituted α,β-unsaturated acids and anhydride. Org Biomol Chem 2025. [PMID: 40391541 DOI: 10.1039/d5ob00306g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The reaction between cyclopropenones and water catalyzed by different phosphines has been thoroughly investigated. Under the catalysis of trimethylphosphine, highly functionalized γ-butenolides were successfully synthesized from the simple starting material, cyclopropenones, and water in 35%-81% yields with excellent diastereoselectivities. Under the catalysis of triphenylphosphine, cyclopropenones were transferred to trisubstituted α,β-unsaturated acids with sufficient water in 78%-99% yields, while α,β-unsaturated acid anhydrides were obtained with trace water.
Collapse
Affiliation(s)
- Fujuan Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Danna Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Hongyan Qu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Mingqi Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Suqing Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China.
| |
Collapse
|
3
|
Wang H, Wei Y, He Y, He TJ, Lin YW. Phosphine-Catalyzed Ring-Opening Regioselective Addition of Cyclopropenones with Amides. J Org Chem 2024; 89:10093-10098. [PMID: 38935753 DOI: 10.1021/acs.joc.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A series of amides, including α-bromo hydroxamates, N-alkoxyamides, and N-aryloxyamides, were subjected to phosphine-catalyzed ring-opening O-selective addition with cyclopropenones, producing various special α,β-unsaturated esters containing oxime ether motif, in moderate to excellent yields, with high regioselectivity, and exclusive O-selectivity. The methodology is highly atom-economical, with simple operation procedures, and compatible with a wide substrate scope (more than 44 examples).
Collapse
Affiliation(s)
- Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Yibo Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Yongjun He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Tian-Juan He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, P. R. China
- Hengyang Medical College, University of South China, Hengyang 421001, P. R. China
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, P. R. China
| |
Collapse
|
4
|
Liang C, Zheng K, Ding Y, Gao J, Wang Z, Cheng J. Pyridine-catalyzed ring-opening reaction of cyclopropenone with bromomethyl carbonyl compounds toward furan-2(5 H)-ones. Chem Commun (Camb) 2024. [PMID: 38258845 DOI: 10.1039/d3cc05888c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We developed a pyridine-catalyzed annulation of diaryl cyclopropenone with bromomethyl carbonyl compounds leading to 5-carbonyl furan-2(5H)-ones. Pyridinium, derived from the reaction of bromomethyl carbonyl and pyridine, triggered the reaction by the inter-molecular Michael addition to cyclopropenone. This procedure was sensitive neither to air nor moisture and proceeded at room temperature with broad substrate scopes and good functional group tolerance in moderate-to-good yields. As such, it represents a facile and practical pathway leading to 5-carbonyl furan-2(5H)-one derivatives.
Collapse
Affiliation(s)
- Chen Liang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Kui Zheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Yifang Ding
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Junhang Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Zhenlian Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Jiang Cheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
- Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
5
|
Liang C, Chen Z, Hu X, Yu S, Wang Z, Cheng J. Phosphine-catalyzed ring-opening reaction of cyclopropenones with dicarbonyl compounds. Org Biomol Chem 2023; 21:7712-7716. [PMID: 37702379 DOI: 10.1039/d3ob01409f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
We developed a phosphine-catalyzed ring-opening reaction of cyclopropenones with dicarbonyl compounds as C-nucleophiles, leading to 1,3,3'-tricarbonyl compounds. During this neutral procedure, C-acylation is more dominant than O-acylation. This transition-metal free procedure features mild and neutral reaction conditions with good atom economy. As such, it represents a facile pathway to access 1,3,3'-tricarbonyl derivatives.
Collapse
Affiliation(s)
- Chen Liang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Zhibin Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Xinyue Hu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Shengxia Yu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Zhenlian Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Jiang Cheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| |
Collapse
|