1
|
Edirin OJ, Carrick JD. Synthesis of Fused [1,2,3]-Triazoloheteroarenes via Intramolecular Azo Annulation of N-Tosylhydrazones Catalyzed by 1,8-Diaza-bicyclo[5.4.0]undec-7-ene. J Org Chem 2024; 89:7201-7209. [PMID: 38699812 DOI: 10.1021/acs.joc.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The structural diversity of triazoloheteroarenes render this moiety an attractive synthon for drug discovery, C-H functionalization, and complexant design for minor actinide separations. While contemporary work has demonstrated the capacity to leverage downstream functional group interconversion of the triazolopyridine, a broadly applicable method tolerant of diverse heteroaryl constructs and pendant functionality to obtain triazoloheteroarenes remains under reported. In this work, the serendipitous discovery of a metal, azide, and oxidant free transformation of various heteroaryl N-tosylhydrazones of carbaldehydes and ketones to the corresponding [1,2,3]-triazoloheteroarene via intramolecular azo annulation using a substoichiometric amount of 1,8-diaza-bicyclo[5.4.0]undec-7-ene is described. These results substantively improve upon previous approaches offering efficient access to the described heterocycles. Discovery of reaction conditions, method optimization, complexant, pyridine, and heteroarene substrate scope, as well as relevant scale-up reactions are reported herein.
Collapse
Affiliation(s)
- Orume J Edirin
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - Jesse D Carrick
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| |
Collapse
|
2
|
Fletcher LS, Tedder ML, Olayiwola SO, Joyner NA, Mason MM, Oliver AG, Ensor DD, Dixon DA, Carrick JD. Next-Generation 3,3'-AlkoxyBTPs as Complexants for Minor Actinide Separation from Lanthanides: A Comprehensive Separations, Spectroscopic, and DFT Study. Inorg Chem 2024; 63:4819-4827. [PMID: 38437739 DOI: 10.1021/acs.inorgchem.3c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Progress toward the closure of the nuclear fuel cycle can be achieved if satisfactory separation strategies for the chemoselective speciation of the trivalent actinides from the lanthanides are realized in a nonproliferative manner. Since Kolarik's initial report on the utility of bis-1,2,4-triazinyl-2,6-pyridines (BTPs) in 1999, a perfect complexant-based, liquid-liquid separation system has yet to be realized. In this report, a comprehensive performance assessment for the separation of 241Am3+ from 154Eu3+ as a model system for spent nuclear fuel using hydrocarbon-actuated alkoxy-BTP complexants is described. These newly discovered complexants realize gains that contemporary aryl-substituted BTPs have yet to achieve, specifically: long-term stability in highly concentrated nitric acid solutions relevant to the low pH of unprocessed spent nuclear fuel, high DAm over DEu in the economical, nonpolar diluent Exxal-8, and the demonstrated capacity to complete the separation cycle with high efficiency by depositing the chelated An3+ to the aqueous layer via decomplexation of the metal-ligand complex. These soft-N-donor BTPs are hypothesized to function as bipolar complexants, effectively traversing the organic/aqueous interface for effective chelation and bound metal/ligand complex solubility. Complexant design, separation assays, spectroscopic analysis, single-crystal X-ray crystallographic data, and DFT calculations are reported.
Collapse
Affiliation(s)
- Lesta S Fletcher
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - Mariah L Tedder
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - Samiat O Olayiwola
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - Nickolas A Joyner
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Marcos M Mason
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Allen G Oliver
- Department of Chemistry, The University of Notre Dame, Notre Dame, Indiana 46656, United States
| | - Dale D Ensor
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| | - David A Dixon
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Jesse D Carrick
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505-0001, United States
| |
Collapse
|