1
|
Tyagi R, Yadav K, Khanna A, Mishra SK, Sagar R. Efficient synthesis of indole-chalcones based glycohybrids and their anticancer activity. Bioorg Med Chem 2024; 109:117778. [PMID: 38870714 DOI: 10.1016/j.bmc.2024.117778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Indole based glycosides belong to the class of pharmacologically active molecules and found in diverse natural compounds. Herein, we report the synthesis of 1,2,3-triazole bridged chirally enriched diverse indole-chalcones based glycohybrids. Three series of glycohybrids were designed and efficiently synthesized using d-glucose, d-galactose and d-mannose derived 1-azido glycosides. The reactions sequence involved were, the synthesis of indole derived chalcones which were formed via Claisen-Schmidt condensation reaction and subsequently N-propargylation which leads to the production of N-propargylated indole-chalcones. The N-propargylated indole-chalcones get transformed into 1,2,3-triazole bridged indole-chalcone based glycohybrids by reacting with 1-azido sugar glycosides under click-chemistry reaction conditions. Further, the biological activity of synthesized glycohybrids (n = 27) was assessed in-vitro against MDA-MB231, MCF-7, MDA-MB453 cancer, and MCF-10A normal cell lines. The selected compounds showed potent anti-oncogenic properties against MCF-7 and MDA-MB231 breast cancer cell line with IC50 values of 1.05 µM and 11.40 µM respectively, with very good selectivity index (SI > 161). The active compounds show better binding affinity as compared to co-crystallized inhibitor 1-(tert-butyl)-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP1) with HCK (PTKs) proteins in molecular docking studies.
Collapse
Affiliation(s)
- Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kanchan Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sunil K Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT-BHU), Varanasi 221005, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Pradhan P, Moktan S, Biswas A, Das A, Lenka R, Kancharla PK. Triple Role of Proton Sponge (DMAN) in the Palladium-Catalyzed Direct Stereoselective Synthesis of C-Aryl Glycosides from Glycals. Org Lett 2024; 26:3563-3568. [PMID: 38652887 DOI: 10.1021/acs.orglett.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The triple role of 1,8-bis(dimethylamino)naphthalene (proton sponge) as a reductant, ligand precursor, and organic base in the palladium-catalyzed Heck-type coupling reaction of glycals with aryl iodides affords the rapid and stereoselective synthesis of 2',3'-unsaturated α-C-aryl glycosides in excellent yields. The role of the proton sponge in reducing palladium(II) to (0) has been studied using cyclic voltammetry, UV-vis, HRMS, and other spectroscopic techniques. This is the first example of a palladium proton sponge complex utilized in coupling reactions. The method is observed to be tolerant of various functional groups, as demonstrated by the huge substrate scope. Moreover, the 2',3'-unsaturated α-C-aryl glycosides were also converted to 3-keto-β-C-glycosides under sterically hindered pyridinium salt catalysis via a ring-opening and -closing mechanism.
Collapse
Affiliation(s)
- Priyanka Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sangay Moktan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ashish Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rajesh Lenka
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Singh K, Sharma S, Tyagi R, Sagar R. Recent progress in the synthesis of natural product inspired bioactive glycohybrids. Carbohydr Res 2023; 534:108975. [PMID: 37871479 DOI: 10.1016/j.carres.2023.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Carbohydrates are a basic structural component that are indispensable to all cellular processes. In addition to being employed as chiral starting materials in the synthesis of a variety of natural products, carbohydrates are recognized as naturally occurring molecules having an enormous variety of functional, stereochemical, and structural properties. The understanding and biological roles of carbohydrate derived molecules can be greatly improved by selectively synthesizing functional carbohydrates through incorporating them with privileged scaffolds. For a deeper understanding of their roles and the development of functional materials based on sugar, it is crucial to develop new techniques for efficiently synthesizing, functionalizing, and modifying carbohydrates. Glycohybrids have a wide range of structural and functional characteristics along with protein-carbohydrate interactions that are crucial to mammalian biology and a number of disease states. This review, consisting the literature from January 2017 to July 2023 and provide an overview of recent developments in the chemical synthesis of glycohybrids based on natural product scaffolds of coumarin, quinolone, naphthalene diimide, indole, isatin, naphthoquinone, imidazole and pyrimidine. The biological activity of active glycohybrids are discussed in this review.
Collapse
Affiliation(s)
- Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Xiao X, Han P, Wan JP, Liu J. Stereoselective Synthesis of Indolyl- C-glycosides Enabled by Sequential Aminopalladation and Heck Glycosylation of 2-Alkynylanilines with Glycals. Org Lett 2023; 25:7170-7175. [PMID: 37756216 DOI: 10.1021/acs.orglett.3c02688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
An efficient and general approach for the synthesis of indolyl-C-glycosides via aminopalladation and subsequent Heck-type glycosylation of easily available 2-alkynylanilines and glycals has been developed. This protocol features excellent stereoselectivity, a broad substrate scope, and mild reaction conditions. In addition, 2,3-pseudoglycals also successfully participated in this cascade reaction, affording C2/C3-branched indolyl glycosides with high regio-/stereoselectivity. The utility of this protocol was also demonstrated by a large-scale reaction and diversified synthetic transformations of the desired products.
Collapse
Affiliation(s)
- Xiao Xiao
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Puren Han
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jianchao Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
5
|
Mu QQ, Guo AX, Cai X, Qin YY, Liu XL, Ye FZ, Yang HJ, Xiao X, Liu XW. Cobalt's Dual Role in Promoting C3-Glycosylation of Indoles: Unraveling Mechanistic Insights. Org Lett 2023; 25:7040-7045. [PMID: 37721454 DOI: 10.1021/acs.orglett.3c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
In this study, we present a cobalt-catalyzed C3-glycosylation of indoles using unfunctionalized glycals, yielding 3-indolyl-C-deoxyglycosides. These compounds hold promise as sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for treating type 2 diabetes. Control experiments unveiled that cobalt assumes a dual role, facilitating catalytic C-glycosylation while unexpectedly driving the anomerization of α-anomers through endocyclic cleavage of the C1-O5 bond, resulting in the formation of β-C-deoxyglycosides. Furthermore, density functional theory (DFT) calculations shed light on the reaction mechanism, emphasizing the significant role of the pyridine group of indole in stabilizing transition states and intermediates.
Collapse
Affiliation(s)
- Qiu-Qi Mu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Ao-Xin Guo
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xin Cai
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Yang-Yang Qin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xing-Le Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Fang-Zhen Ye
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Hui-Jie Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xiong Xiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|