1
|
Jiang L, Tang Y, Li S, Peng X, Saffar Andaloussi R, Chen XY. Visible Light-Driven Metal- and Photocatalyst-Free Synthesis of β-Trifluoromethylated Enamines via Trifluoromethyl Thianthrenium Salts. Chem Asian J 2025; 20:e202401129. [PMID: 39469779 DOI: 10.1002/asia.202401129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
A novel protocol for the visible-light-driven synthesis of β-trifluoromethylated enamines has been developed, which operates without the use of transition metals or any photocatalysts, utilizing trifluoromethylthiosulfonium salts as the source of trifluoromethyl groups under mild conditions. According to this new protocol, more than 40 products have been prepared in moderate to good yields. In addition to eliminating the need for expensive or toxic transition metals and photocatalysts, this new methodology proves its potential scalability through air-stability, the use of safe and readily available reagents, a two-step one-pot procedure, and effective gram-scale reactions. This innovative approach not only demonstrates promise for green chemical synthesis but also offers a new pathway for the advancement of fluorine chemistry in sustainable organic synthesis.
Collapse
Affiliation(s)
- Liang Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Yisong Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510275, China
| | - Shaxuan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Xing Peng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Rim Saffar Andaloussi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Xiao Yun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| |
Collapse
|
2
|
Leśniewska A, Przybylski P. Seven-membered N-heterocycles as approved drugs and promising leads in medicinal chemistry as well as the metal-free domino access to their scaffolds. Eur J Med Chem 2024; 275:116556. [PMID: 38879971 DOI: 10.1016/j.ejmech.2024.116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Azepanes or azepines are structural motifs of many drugs, drug candidates and evaluated lead compounds. Even though compounds having N-heterocyclic 7-membered rings are often found in nature (e.g. alkaloids), the natural compounds of this group are rather rare as approved therapeutics. Thus, recently studied and approved azepane or azepine-congeners predominantly consist of semi-synthetically or synthetically-obtained scaffolds. In this review a comparison of approved drugs and recently investigated leads was proposed taking into regard their structural aspects (stereochemistry), biological activities, pharmacokinetic properties and confirmed molecular targets. The 7-membered N-heterocycles reveal a wide range of biological activities, not only against CNS diseases, but also as e.g. antibacterial, anticancer, antiviral, antiparasitic and against allergy agents. As most of the approved or investigated potential drugs or lead structures, belonging to 7-membered N-heterocycles, are synthetic scaffolds, this report also reveals different and efficient metal-free cascade approaches useful to synthesize both simple azepane or azepine-containing congeners and those of oligocyclic structures. Stereochemistry of azepane/azepine fused systems, in view of biological data and binding with the targets, is discussed. Apart from the approved drugs, we compare advances in SAR studies of 7-membered N-heterocycles (mainly from 2018 to 2023), whereas the related synthetic part concerning various domino strategies is focused on the last ten years.
Collapse
Affiliation(s)
- Aleksandra Leśniewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland.
| |
Collapse
|
3
|
Zeng J, Zhou T, Liu J, Wan JP. Photocatalytic Pyridine Synthesis with Enaminones and TMEDA under Metal-Free Conditions. J Org Chem 2024; 89:11060-11066. [PMID: 39046227 DOI: 10.1021/acs.joc.4c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Reported herein is a new photocatalytic annulation for the synthesis of 2,3,4,6-tetrasubstituted pyridines with enaminones and N,N,N',N'-tetramethyl ethylenediamine (TMEDA). The photocatalytic reactions take place without requiring a transition metal reagent and provide products with broad scope. The methyl in TMEDA acts as the carbon source in pyridine ring construction, and BrCF2CO2Et plays the role of the terminal oxidant for free radical quenching.
Collapse
Affiliation(s)
- Junlong Zeng
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Tao Zhou
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jianchao Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
4
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
5
|
Farghaly TA, Alosaimy AM, Al-Qurashi NT, Masaret GS, Abdulwahab HG. The most Recent Compilation of Reactions of Enaminone Derivatives with various Amine Derivatives to Generate Biologically Active Compounds. Mini Rev Med Chem 2024; 24:793-843. [PMID: 37711104 DOI: 10.2174/1389557523666230913164038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Heterocyclic derivatives serve as the fundamental components of both natural and synthetic drugs. Enaminones play a crucial role as foundational units in the synthesis of numerous bioactive heterocyclic compounds, including pyrazoles, pyridines, oxazoles, isoxazoles, as well as fused heterocyclic structures like indoles, carbazoles, quinolines, acridines, and phenanthridines. These diverse heterocyclic rings are well-known for their various therapeutic activities, encompassing anticancer, anti-inflammatory, antimicrobial, antidepressant, and antiviral properties. By reacting with nitrogenbased nucleophiles, enaminones can generate bioactive azoles, azines, and their fused systems. This study focuses on the recent advancements in enaminone reactions with (a) nitrogen-based nucleophiles, such as aliphatic amines, derivatives of aniline, heterocyclic amines, hydroxylamine, hydrazine derivatives, guanidine derivatives, urea, and thiourea derivatives, and (b) nitrogen-based electrophiles, such as diazonium salts. These reactions have led to the synthesis of a wide range of bioactive fused heterocyclic compounds from 2010 to the end of 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Amal M Alosaimy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Nadia T Al-Qurashi
- Department of Basic Science, University College in Adam, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Lei SG, Zhou Y, Wang LS, Yu ZC, Chen T, Wu YD, Gao M, Wu AX. One Stone, Three Birds: One-Pot Synthesis of Pyrido[3,2- a]phenoxazin-5-one Derivatives from o-Aminophenols with Triple Roles, Paraformaldehyde, and Enaminones via the Povarov Reaction. J Org Chem 2023; 88:11150-11160. [PMID: 37462913 DOI: 10.1021/acs.joc.3c01118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A novel multicomponent cascade cyclization reaction in one pot for the preparation of pyrido[3,2-a]phenoxazin-5-ones from simple o-aminophenols, paraformaldehyde, and enaminones has been established. It is noteworthy that o-aminophenol plays multiple roles serving as both a bis-nucleophile and an iminoquinone precursor, which can in situ generate aminophenoxazinones to undergo the Povarov reaction for the first time to yield pyrido[3,2-a]phenoxazin-5-ones with a high efficiency. Moreover, the photoluminescence of pyrido[3,2-a]phenoxazin-5-ones has polarity sensitivity and features aggregation-induced emission (AIE) characteristics, which is promising for bioimaging and theranostic applications.
Collapse
Affiliation(s)
- Shuang-Gui Lei
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ting Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|