1
|
Tu W, Farndon JJ, Robertson CM, Bower JF. An Aza-Prilezhaev-Based Method for Inversion of Regioselectivity in Stereospecific Alkene 1,2-Aminohydroxylations. Angew Chem Int Ed Engl 2024; 63:e202409836. [PMID: 39171407 DOI: 10.1002/anie.202409836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Under acidic conditions (TFA) and in the presence of water, BocNHOTs promotes stereospecific 1,2-aminohydroxylations of alkenes. The processes involve intermolecular aza-Prilezhaev aziridination followed by stereospecific SN2 opening by water. This reagent combination provides regiochemical outcomes that are opposite to, or more selective than those observed using epoxidation initiated 1,2-aminohydroxylation protocols. Replacement of water by other nucleophiles allows 1,2-amino(thio)etherification, diamination, aminoazidation and aminofluorination reactions. Intramolecular processes are also feasible, including unusual variants that evoke azabicyclobutane-like reactivity.
Collapse
Affiliation(s)
- Wenbin Tu
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, United Kingdom, L69 7ZD
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom, BS8 1TS
| | - Joshua J Farndon
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom, BS8 1TS
| | - Craig M Robertson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, United Kingdom, L69 7ZD
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, United Kingdom, L69 7ZD
| |
Collapse
|
2
|
DeCicco EM, Tlapale-Lara N, Paradine SM. Incorporating azaheterocycle functionality in intramolecular aerobic, copper-catalyzed aminooxygenation of alkenes. RSC Adv 2024; 14:28822-28826. [PMID: 39257658 PMCID: PMC11386206 DOI: 10.1039/d4ra06178k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Despite the maturity of alkene 1,2-difunctionalization reactions involving C-N bond formation, a key limitation across aminofunctionalization methods is incompatibility with substrates bearing medicinally relevant N-heterocycles. Using a cooperative ligand-substrate catalyst activation strategy, we have developed an aerobic, copper-catalyzed alkene aminooxygenation method that exhibits broad tolerance for β,γ-unsaturated carbamates bearing aromatic azaheterocycle substitution. The synthetic potential of this methodology was demonstrated by engaging a densely-functionalized vonoprazan analogue and elaborating an amino oxygenated product to synthesize a heteroarylated analogue precursor of the FDA-approved antibiotic chloramphenicol.
Collapse
Affiliation(s)
- Ethan M DeCicco
- Department of Chemistry, University of Rochester 120 Trustee Road Rochester NY 14627 USA
| | - Neively Tlapale-Lara
- Department of Chemistry, University of Rochester 120 Trustee Road Rochester NY 14627 USA
| | - Shauna M Paradine
- Department of Chemistry, University of Rochester 120 Trustee Road Rochester NY 14627 USA
| |
Collapse
|
3
|
Liang S, Jensen MP. [Fe(NCMe) 6](BF 4) 2 is a bifunctional catalyst for styrene aziridination by nitrene transfer and heterocycle expansion by subsequent dipolar insertion. J Inorg Biochem 2024; 256:112551. [PMID: 38678911 DOI: 10.1016/j.jinorgbio.2024.112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
The solvated iron(II) salt [Fe(NCMe)6](BF4)2 (Me = methyl) is shown to be a bifunctional catalyst with respect to aziridination of styrene. The salt serves as an active catalyst for nitrene transfer from PhINTs to styrene to form 2-phenyl-N-tosylaziridine (Ph = phenyl; Ts = tosyl, -S{O}2-p-C6H4Me). The iron(II) salt also acts as a Lewis acid in non-coordinating CH2Cl2 solution, to catalyze heterolytic CN bond cleavage of the aziridine and insertion of dipolarophiles. The 1,3-zwitterionic intermediate is presumably supported by interaction of the metal dication with the anion, and by resonance stabilization of the carbocation. Nucleophilic dipolarophiles then insert to give a five-membered heterocyclic ring. The result is a two-step cycloaddition, formally [2 + 1 + 2], that is typically regiospecific, but not stereospecific. This reaction mechanism was confirmed by conducting a series of one-step, [3 + 2] additions of unsaturated molecules into pre-formed 2-phenyl-N-tosylaziridine, also catalyzed by [Fe(NCMe)6](BF4)2. Relevant substrates include styrenes, carbonyl compounds and alkynes. These yield five-membered heterocylic rings, including pyrrolidines, oxazolidines and dihydropyrroles, respectively. The reaction scope appears limited only by the barrier to formation of the dipolar intermediate, and by the nucleophilicity of the captured dipolarophile. The bifunctionality of an inexpensive, earth-abundant and non-toxic catalyst suggests a general strategy for one-pot construction of heterocyclic rings, as demonstrated specifically for pyrrolidine ring formation.
Collapse
Affiliation(s)
- Shengwen Liang
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Michael P Jensen
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
4
|
Piejko M, Moran J, Lebœuf D. Difunctionalization Processes Enabled by Hexafluoroisopropanol. ACS ORGANIC & INORGANIC AU 2024; 4:287-300. [PMID: 38855339 PMCID: PMC11157514 DOI: 10.1021/acsorginorgau.3c00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 06/11/2024]
Abstract
In the past 5 years, hexafluoroisopropanol (HFIP) has been used as a unique solvent or additive to enable challenging transformations through substrate activation and stabilization of reactive intermediates. In this Review, we aim at describing difunctionalization processes which were unlocked when HFIP was involved. Specifically, we focus on cyclizations and additions to alkenes, alkynes, epoxides, and carbonyls that introduce a wide range of functional groups of interest.
Collapse
Affiliation(s)
- Maciej Piejko
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Joseph Moran
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Institut
Universitaire de France (IUF), 75005 Paris, France
| | - David Lebœuf
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
5
|
Shen M, Li M, Yu J. Pd-catalyzed three-component [2 + 2 + 1] cycloamination toward carbazoles. Org Biomol Chem 2024; 22:3268-3272. [PMID: 38568713 DOI: 10.1039/d4ob00356j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Conventional approaches using hydroxylamine derivatives as single nitrogen sources for the preparation of N-heterocyclic molecules rely on two chemical processes involving sequential nucleophilic and electrophilic C-N bond formations. Herein, we report a novel Suzuki reaction/C-H activation/amination sequence for building a myriad of carbazoles in a single transformation using bifunctional secondary hydroxylamines. It is noteworthy that the synthetic utility of this methodology is highlighted by the total synthesis of clausine V and glycoborine by incorporating the title [2 + 2 + 1] cycloamination as the key step. Control experiments were performed to gain a better understanding of the reaction mechanism.
Collapse
Affiliation(s)
- Mingzhu Shen
- College of Chemistry & Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an Zone, Xi'an 710127, China.
| | - Min Li
- College of Chemistry & Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an Zone, Xi'an 710127, China.
| | - Jingxun Yu
- College of Chemistry & Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an Zone, Xi'an 710127, China.
| |
Collapse
|
6
|
Corral Suarez C, Colomer I. Trifluoromethylarylation of alkenes using anilines. Chem Sci 2023; 14:12083-12090. [PMID: 37969609 PMCID: PMC10631225 DOI: 10.1039/d3sc03868h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023] Open
Abstract
Nitrogen containing compounds, such as anilines, are some of the most widespread and useful chemical species, although their high and unselective reactivity has prevented their incorporation into many interesting transformations, such as the functionalization of alkenes. Herein we report a method that allows the trifluoromethylarylation of alkenes using anilines, for the first time, with no need for additives, transition metals, photocatalysts or an excess of reagents. An in-depth mechanistic study reveals the key role of hexafluoroisopropanol (HFIP) as a unique solvent, establishing a hydrogen bonding network with aniline and trifluoromethyl reagent, that is responsible for the altered reactivity and exquisite selectivity. This work uncovers a new mode of reactivity that involves the use of abundant anilines as a non-prefunctionalized aromatic source and the simultaneous activation of trifluoromethyl hypervalent iodine reagent.
Collapse
Affiliation(s)
- Carlos Corral Suarez
- Instituto de Química Orgánica General (IQOG), CSIC Juan de la Cierva 3 28006 Madrid Spain
- IMDEA Nanociencia, Faraday 9 28049 Madrid Spain
| | - Ignacio Colomer
- Instituto de Química Orgánica General (IQOG), CSIC Juan de la Cierva 3 28006 Madrid Spain
- IMDEA Nanociencia, Faraday 9 28049 Madrid Spain
| |
Collapse
|
7
|
Ajmeera S, Golagani D, Akondi SM. Ferrocene catalyzed carbohydroxylation of alkenes using H 2O and cycloketone oxime esters. Org Biomol Chem 2023; 21:8482-8487. [PMID: 37853953 DOI: 10.1039/d3ob01481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A cyanoalkyl-hydroxylation reaction of aryl alkenes has been successfully devised, employing ferrocene as a catalyst for the addition of a cycloketone oxime ester and H2O across the double bond of the alkene. This environmentally friendly approach employs a solvent mixture consisting of water and demonstrates redox neutrality, along with exceptional regio- and chemoselectivity, leading to the formation of diverse distal hydroxy-nitrile compounds. Moreover, this research presents noteworthy contributions in terms of late-stage functionalization of complex molecules and offers valuable insights into the mechanistic aspects of the reaction.
Collapse
Affiliation(s)
- Sriram Ajmeera
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durga Golagani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|