1
|
López-Corrales M, Izquierdo-García E, Bosch M, Das T, Llebaria A, Josa-Culleré L, Marchán V. Exploring the Phototherapeutic Applications of Mitochondria-Targeted COUPY Photocages of Antitumor Drugs. J Med Chem 2025; 68:9741-9754. [PMID: 40293412 DOI: 10.1021/acs.jmedchem.5c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Photocleavable protecting groups hold great promise in photopharmacology to control the release of bioactive molecules from their caged precursors within specific subcellular compartments. Herein, we describe a series of photocages based on a COUPY scaffold, incorporating chlorambucil (CLB) and 4-phenylbutyric acid (4-PBA) as bioactive payloads that can be efficiently activated with visible light. Confocal microscopy confirmed the preferential accumulation of CLB and 4-PBA N-hexyl COUPY photocages in the mitochondria, which exhibited a remarkable phototoxicity against cancer cells upon green-yellow light irradiation, with IC50 values in the nanomolar range. This effect was attributed to a synergistic mechanism involving the photorelease of the bioactive payloads and the intrinsic photogeneration of Type I and Type II ROS by the COUPY scaffold within mitochondria. Thus, COUPY-caged derivatives of CLB and 4-PBA underscore the potential of COUPY-caging groups as a versatile platform to develop innovative light-activated agents operating simultaneously through photodynamic therapy and photoactivated chemotherapy.
Collapse
Affiliation(s)
- Marta López-Corrales
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Eduardo Izquierdo-García
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics (CCiTUB), Universitat de Barcelona (UB), Av. Diagonal 643, E-08028 Barcelona, Spain
| | - Tapas Das
- Department of Chemistry, National Institute of Technology Jamshedpur, Jamshedpur, Jharkhand 831014, India
| | - Amadeu Llebaria
- MCS, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Laia Josa-Culleré
- MCS, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
2
|
Tian YM, Lai HJ, Wu WN, Zhao XL, Wang Y, Fan YC, Xu ZH, James TD. A coumarin-based probe with far-red emission for the ratiometric detection of peroxynitrite in the mitochondria of living cells and mice. Talanta 2025; 284:127272. [PMID: 39591867 DOI: 10.1016/j.talanta.2024.127272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Peroxynitrite (ONOO-) is a transient and reactive oxidant with significant roles in numerous biological processes. Research has established a correlation between excessive mitochondrial ONOO- production and various diseases. As such we developed a mitochondria-targeting, fluorescence-based ratiometric probe using a boronate group for ONOO- recognition and coumarin as the fluorophore. The probe exhibited a 615 nm far-red emission, and a new fluorescence emission at 475 nm developed upon adding ONOO-.The probe possessed high sensitivity and selectivity for ONOO- detection with distinct ratiometric fluorescent output and a low detection limit of 11 nM. Significantly, Probe 1 could monitor ONOO- level fluctuations in biological systems due to its superior spectral properties and low toxicity. Notably, probe 1 has been effectively used for imaging in live HepG2 cells, zebrafish, Arabidopsis thaliana, and liver injury mouse tissues.
Collapse
Affiliation(s)
- Yu-Man Tian
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Hui-Juan Lai
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Xuchang, 461000, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
3
|
Clotworthy MR, Dawson JJM, Johnstone MD, Fleming CL. Coumarin-Derived Caging Groups in the Spotlight: Tailoring Physiochemical and Photophysical Properties. Chempluschem 2024; 89:e202400377. [PMID: 38960871 DOI: 10.1002/cplu.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The development of light-responsive molecular tools enables spatiotemporal control of biochemical processes with superior precision. Amongst these molecular tools, photolabile caging groups are employed to prevent critical binding interactions between a bioactive molecule and its corresponding target. Only upon irradiation with light, the bioactive is released in its 'active' form and is now readily available to bind to its target. Coumarin-derived caging groups constitute one of the most popular classes of photolabile protecting groups, due to their facile synthetic accessibility, ease of tuning photophysical properties via structural modification and rapid photolysis reactions. Herein, we highlight the recent progress made on the development of coumarin-derived caging groups, in which the red-shifting of absorption spectra, improving aqueous solubility and tailoring sub-cellular localisation has been of particular interest.
Collapse
Affiliation(s)
- Megan R Clotworthy
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Joseph J M Dawson
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Mark D Johnstone
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Cassandra L Fleming
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| |
Collapse
|
4
|
Wei X, Mi L, Dong S, Yang H, Xu S. Construction of a coumarin-based fluorescent probe for accurately visualizing hydrogen sulfide in live cells and zebrafish. RSC Adv 2024; 14:16327-16331. [PMID: 38769960 PMCID: PMC11104009 DOI: 10.1039/d4ra00668b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Hydrogen sulfide (H2S), an important gas signaling molecule, is a regulator of many physiological processes, and its abnormal levels are closely related to the onset and progression of disease. It is vital to develop methods for specific tracking of H2S in clinical diagnosis and treatment. In this study, we designed an ultrasensitive and highly stable coumarin-based fluorescent probe Cou-H2S. Through the H2S-initiated tandem reaction, Cou-H2S successfully achieved highly selective and super-fast detection of H2S. Cou-H2S was successfully applied to the monitoring of endogenous and exogenous H2S at the cellular level and verified the validity of the detection of H2S in the LPS-induced zebrafish model. Therefore, Cou-H2S might provide new insights into the study of H2S-related diseases.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University Guangzhou 510282 China
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital, The First Affiliated Hospital of Hainan Medical University Haikou 570102 China
| | - Long Mi
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital, The First Affiliated Hospital of Hainan Medical University Haikou 570102 China
| | - Shenglong Dong
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital, The First Affiliated Hospital of Hainan Medical University Haikou 570102 China
| | - Hui Yang
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital, The First Affiliated Hospital of Hainan Medical University Haikou 570102 China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University Guangzhou 510282 China
| |
Collapse
|
5
|
Wei H, Xie M, Chen M, Jiang Q, Wang T, Xing P. Shedding light on cellular dynamics: the progress in developing photoactivated fluorophores. Analyst 2024; 149:689-699. [PMID: 38180167 DOI: 10.1039/d3an01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Photoactivated fluorophores (PAFs) are highly effective imaging tools that exhibit a removal of caging groups upon light excitation, resulting in the restoration of their bright fluorescence. This unique property allows for precise control over the spatiotemporal aspects of small molecule substances, making them indispensable for studying protein labeling and small molecule signaling within live cells. In this comprehensive review, we explore the historical background of this field and emphasize recent advancements based on various reaction mechanisms. Additionally, we discuss the structures and applications of the PAFs. We firmly believe that the development of more novel PAFs will provide powerful tools to dynamically investigate cells and expand the applications of these techniques into new domains.
Collapse
Affiliation(s)
- Huihui Wei
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Mingli Xie
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Min Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Qinhong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Tenghui Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Panfei Xing
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
6
|
Izquierdo-García E, Rovira A, Forcadell J, Bosch M, Marchán V. Exploring Structural-Photophysical Property Relationships in Mitochondria-Targeted Deep-Red/NIR-Emitting Coumarins. Int J Mol Sci 2023; 24:17427. [PMID: 38139255 PMCID: PMC10743691 DOI: 10.3390/ijms242417427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Organic fluorophores operating in the optical window of biological tissues, namely in the deep-red and near-infrared (NIR) region of the electromagnetic spectrum, offer several advantages for fluorescence bioimaging applications owing to the appealing features of long-wavelength light, such as deep tissue penetration, lack of toxicity, low scattering, and reduced interference with cellular autofluorescence. Among these, COUPY dyes based on non-conventional coumarin scaffolds display suitable photophysical properties and efficient cellular uptake, with a tendency to accumulate primarily in mitochondria, which renders them suitable probes for bioimaging purposes. In this study, we have explored how the photophysical properties and subcellular localization of COUPY fluorophores can be modulated through the modification of the coumarin backbone. While the introduction of a strong electron-withdrawing group, such as the trifluoromethyl group, at position 4 resulted in an exceptional photostability and a remarkable redshift in the absorption and emission maxima when combined with a julolidine ring replacing the N,N-dialkylaminobenzene moiety, the incorporation of a cyano group at position 3 dramatically reduced the brightness of the resulting fluorophore. Interestingly, confocal microscopy studies in living HeLa cells revealed that the 1,1,7,7-tetramethyl julolidine-containing derivatives accumulated in the mitochondria with much higher specificity. Overall, our results provide valuable insights for the design and optimization of new COUPY dyes operating in the deep-red/NIR region.
Collapse
Affiliation(s)
- Eduardo Izquierdo-García
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Carrer Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Anna Rovira
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Carrer Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Joan Forcadell
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Carrer Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona (UB), Avinguda Diagonal 643, E-08028 Barcelona, Spain
| | - Vicente Marchán
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Carrer Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
7
|
Singh AK, Mengji R, Nair AV, Shah SS, Avijit J, Singh NDP. Photoactivable AIEgen-based Lipid-Droplet-Specific Drug Delivery Model for Live Cell Imaging and Two-Photon Light-Triggered Anticancer Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:4372-4382. [PMID: 37791981 DOI: 10.1021/acsabm.3c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Lipid droplets (LDs) are dynamic complex organelles involved in various physiological processes, and their number and activity are linked to multiple diseases, including cancer. In this study, we have developed LD-specific near-infrared (NIR) light-responsive nano-drug delivery systems (DDSs) based on chalcone derivatives for cancer treatment. The reported nano-DDSs localized inside the cancer microenvironment of LDs, and upon exposure to light, they delivered the anticancer drug valproic acid in a spatiotemporally controlled manner. The developed systems, namely, 2'-hydroxyacetophenone-dimethylaminobenzaldehyde-valproic (HA-DAB-VPA) and 2'-hydroxyacetophenone-diphenylaminobenzaldehyde-valproic (HA-DPB-VPA) ester conjugates, required only two simple synthetic steps. Our reported DDSs exhibited interesting properties such as excited-state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE) phenomena, which provided advantages such as AIE-initiated photorelease and ESIPT-enhanced rate of photorelease upon exposure to one- or two-photon light. Further, colocalization studies of the nano-DDSs by employing two cancerous cell lines (MCF-7 cell line and CT-26 cell line) and one normal cell line (HEK cell line) revealed LD concentration-dependent enhanced fluorescence intensity. Furthermore, systematic investigations of both the nano-DDSs in the presence and absence of oleic acid inside the cells revealed that nano-DDS HA-DPB-VPA accumulated more selectively in the LDs. This unique selectivity by the nano-DDS HA-DPB-VPA toward the LDs is due to the hydrophobic nature of the diphenylaminobenzaldehyde (mimicking the LD core), which significantly leads to the aggregation and ESIPT (at 90% volume of fw, ΦF = 20.4% and in oleic acid ΦF = 24.6%), respectively. Significantly, we used this as a light-triggered anticancer drug delivery model to take advantage of the high selectivity and accumulation of the nano-DDS HA-DPB-VPA inside the LDs. Hence, these findings give a prototype for designing drug delivery models for monitoring LD-related intracellular activities and significantly triggering the release of LD-specific drugs in the biological field.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Rakesh Mengji
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asha V Nair
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sk Sheriff Shah
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Jana Avijit
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - N D Pradeep Singh
- Department of Chemistry, Photochemistry Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|