1
|
Tian Q, Ge J, Liu Y, Wu X, Li Z, Cheng G. Palladium-Catalyzed Enantioselective Synthesis of P(V)-Stereogenic Compounds via Desymmetric Annulation of Prochiral Phosphinamides and Aryl Iodides. Org Lett 2025; 27:121-128. [PMID: 39791235 DOI: 10.1021/acs.orglett.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The enantioselective synthesis of P(V)-stereogenic compounds has emerged as an interesting research topic primarily due to their significant biological activity and broad application prospects. Herein, we disclose a method for the construction of P(V)-stereogenic compounds from prochiral phosphinamides and aryl iodides via palladium- and chiral norbornene-catalyzed desymmetric annulation. The P(V)-stereogenic compounds were formed with a broad scope with excellent enantiomeric excesses. It is noteworthy that the synthetic value of this procedure was proven by a variety of transition metal-catalyzed cross-coupling reactions using the C-Br bond on the product as a versatile linchpin electrophile.
Collapse
Affiliation(s)
- Qingyu Tian
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jin Ge
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yaopeng Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xi Wu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhenghao Li
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
2
|
Li Z, Li J, Fan J, Ding Y, Guo H, Cheng G. Palladium-Catalyzed Dual C-H Arylation/Cyclization Reaction of Iodoferrocenes with ortho-Bromobenzamides for the Construction of Arylated Isoquinolone-Fused Ferrocenes. J Org Chem 2024; 89:18280-18290. [PMID: 39663821 DOI: 10.1021/acs.joc.4c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
We reported a palladium/norbornene-catalyzed dual intermolecular C-H arylation/intramolecular cyclization reaction of iodoferrocenes with ortho-bromobenzamides, enabling the formation of arylated isoquinolone-fused ferrocenes in a straightforward and effective manner. This method has a broad substrate scope and good functional group compatibility, while the gram-scale reaction demonstrates the practicality of this method.
Collapse
Affiliation(s)
- Zhiyong Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingyu Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingwen Fan
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yuhao Ding
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Hailin Guo
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
3
|
Tian Q, Ge J, Liu Y, Wu X, Li Z, Cheng G. Solvent-Controlled Enantiodivergent Construction of P(V)-Stereogenic Molecules via Palladium-Catalyzed Annulation of Prochiral N-Aryl Phosphonamides with Aromatic Iodides. Angew Chem Int Ed Engl 2024; 63:e202409366. [PMID: 38979942 DOI: 10.1002/anie.202409366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
In this work, we describe an efficient and modular method for enantiodivergent accessing P(V)-stereogenic molecules by utilizing the catalytic atroposelective Catellani-type C-H arylation/desymmetric intramolecular N-arylation cascade reaction. The enantioselectivity of this protocol was proved to be tuned by the polarity of the solvent, thus providing a wide range of both chiral P(V)-stereogenic enantiomers in moderate to good yields with good to excellent enantiomeric excesses. Noteworthy is that the strategy developed herein represents an unprecedented example of solvent-dictated inversion of the enantioselectivity of P(V)-stereogenic compounds.
Collapse
Affiliation(s)
- Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jin Ge
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yaopeng Liu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xi Wu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zhenghao Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
4
|
Zhang BS, Deng BJ, Zhi YX, Guo TJ, Wang YM, Gou XY, Quan ZJ, Wang XC, Liang YM. A switch strategy for the synthesis of C4-ethylamine indole and C7-aminoindoline via controllable carbon elimination. Chem Sci 2024:d4sc05111d. [PMID: 39290589 PMCID: PMC11403580 DOI: 10.1039/d4sc05111d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Controllable β-carbon elimination to extrude norbornene remains a long-standing challenge in palladium and norbornene chemistry. Herein, this manuscript describes a switchable synthesis of biologically active C4-ethylaminoindole and C7-aminoindoline scaffolds by controlling β-carbon elimination, utilizing aziridine as a C-H ethylamination reagent through a C-N bond cleavage reaction. Furthermore, the protecting groups of the product can be easily removed, offering an unusual method for the synthesis of dopamine receptor agonists.
Collapse
Affiliation(s)
- Bo-Sheng Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Bao-Jie Deng
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yuan-Xin Zhi
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Tian-Jiao Guo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yi-Ming Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xue-Ya Gou
- State Key Laboratory of Applied OrganicChemistry, Lanzhou University Lanzhou 730000 China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yong-Min Liang
- State Key Laboratory of Applied OrganicChemistry, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
5
|
Wen J, Huang Y, Zhang Y, Grützmacher H, Hu P. Cobalt catalyzed practical hydroboration of terminal alkynes with time-dependent stereoselectivity. Nat Commun 2024; 15:2208. [PMID: 38467660 PMCID: PMC10928171 DOI: 10.1038/s41467-024-46550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Stereodefined vinylboron compounds are important organic synthons. The synthesis of E-1-vinylboron compounds typically involves the addition of a B-H bond to terminal alkynes. The selective generation of the thermodynamically unfavorable Z-isomers remains challenging, necessitating improved methods. Here, such a proficient and cost-effective catalytic system is introduced, comprising a cobalt salt and a readily accessible air-stable CNC pincer ligand. This system enables the transformation of terminal alkynes, even in the presence of bulky substituents, with excellent Z-selectivity. High turnover numbers (>1,600) and turnover frequencies (>132,000 h-1) are achieved at room temperature, and the reaction can be scaled up to 30 mmol smoothly. Kinetic studies reveal a formal second-order dependence on cobalt concentration. Mechanistic investigations indicate that the alkynes exhibit a higher affinity for the catalyst than the alkene products, resulting in exceptional Z-selective performance. Furthermore, a rare time-dependent stereoselectivity is observed, allowing for quantitative conversion of Z-vinylboronate esters to the E-isomers.
Collapse
Affiliation(s)
- Jinglan Wen
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yahao Huang
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yu Zhang
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Peng Hu
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China.
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China.
| |
Collapse
|