1
|
Yang X, Wan X, Yang WC, Fang H. Access to quaternary-carbon-containing β-alkyl amides via persulfate-promoted domino alkylation/smiles rearrangement of alkenes. RSC Adv 2025; 15:16183-16186. [PMID: 40376669 PMCID: PMC12079418 DOI: 10.1039/d5ra02454d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
In this study, we present an efficient approach for synthesizing all-carbon quaternary-centered β-alkyl amides. This method entails a persulfate-promoted cascade alkylative annulation/arylation of N-(arylsulfonyl)acrylamide with 4-alkyl-1,4-dihydropyridines (DHP). The reaction mechanism comprises four consecutive steps: (1) in situ generation of alkyl radical intermediates, (2) radical addition to the alkene moiety, (3) 1,4-aryl migration, and (4) finally desulfonylation.
Collapse
Affiliation(s)
- Xiaohu Yang
- Department of Pharmacy, Zhejiang Hospital Hangzhou Zhejiang 310013 P. R. China
| | - Xiaoqing Wan
- Department of Pharmacy, Zhejiang Hospital Hangzhou Zhejiang 310013 P. R. China
| | - Wen-Chao Yang
- School of Plant Protection, Yangzhou University Yangzhou 225009 P. R. China
| | - Hegui Fang
- Department of Pharmacy, Zhejiang Hospital Hangzhou Zhejiang 310013 P. R. China
| |
Collapse
|
2
|
Jiang S, Liang M, Chen X, Yang R, Ding HX, Luo MJ, Huang H, Song XR, Xiao Q. TMSCl-Promoted Sulfonylation of Propargylic Alcohols with Sodium Sulfinates for the Construction of ( E)-1,3-Disulfonylpropenes and ( E)-1-Sulfonylpropenols. J Org Chem 2024; 89:15694-15707. [PMID: 39395003 DOI: 10.1021/acs.joc.4c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
A direct and novel transformation of propargylic alcohols with sodium sulfinates for the regio- and stereoselective synthesis of (E)-1,3-disulfonylpropenes and (E)-1-sulfonylpropenols was successfully developed in the presence of TMSCl under mild conditions. The preliminary mechanistic experiments demonstrated that the reaction underwent an unprecedented dual nucleophilic substitution/radical addition process, in which sodium sulfinates were used not only as nucleophiles but also as a sulfonyl radical source.
Collapse
Affiliation(s)
- Shimin Jiang
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Meng Liang
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Xi Chen
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Ruchun Yang
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Hai-Xin Ding
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Mu-Jia Luo
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Haiyang Huang
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Xian-Rong Song
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Qiang Xiao
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| |
Collapse
|
3
|
Zhang SP, Guo DW, Yang ML, Xia YT, Yang WC. EDA Complex-Enabled Annulation to Access CF 2-Containing Tetralones and Quinazolinones Using Persulfates as Electron Donors. J Org Chem 2024; 89:10614-10623. [PMID: 39051432 DOI: 10.1021/acs.joc.4c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A photocatalyst-free and EDA complex-enabled radical cascade cyclization reaction of inactive alkenes with bromodifluoroacetamides was reported for the divergent synthesis of fluorine-containing tetralones and quinazolinones. In this transformation, persulfates as electron donors and difluoro bromamide as electron acceptors generate the EDA complex. This is a promising photochemical method with advantages such as mild reaction conditions, simple operation, being metal-free, and excellent functional group tolerance.
Collapse
Affiliation(s)
- Shu-Peng Zhang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Da-Wei Guo
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Mei-Ling Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yun-Tao Xia
- College of Chemistry & Chemical Engineering, Henan University of Technology, Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China
| | - Wen-Chao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
4
|
Mondal K, Ghosh P, Hajra A. An Electrochemical Oxo-amination of 2H-Indazoles: Synthesis of Symmetrical and Unsymmetrical Indazolylindazolones. Chemistry 2024; 30:e202303890. [PMID: 38147010 DOI: 10.1002/chem.202303890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
We have established a supporting-electrolyte free electrochemical method for the synthesis of indazolylindazolones through oxygen reduction reaction (eORR) induced 1,3-oxo-amination of 2H-indazoles where 2H-indazole is used as both aminating agent as well as the precursor of indazolone. Moreover, we have merged indazolone and indazole to get unsymmetrical indazolylindazolones through direct electrochemical cross-dehydrogenative coupling (CDC). This exogenous metal-, oxidant- and catalyst-free protocol delivered a number of multi-functionalized products with high tolerance of diverse functional groups.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Payel Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| |
Collapse
|