1
|
Zdun B, Borowiecki P. Vinyl 3-(Dimethylamino)propanoate as an Irreversible Acyl Donor Reagent in a Chromatography-free Lipase-Catalyzed Kinetic Resolution of sec-Alcohols. Chembiochem 2024; 25:e202400394. [PMID: 39031858 DOI: 10.1002/cbic.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/22/2024]
Abstract
The reported chemoenzymatic strategy involves the employment of vinyl 3-(dimethylamino)propanoate as an irreversible acyl donor in a chromatography-free lipase-catalyzed kinetic resolution (KR) of racemic sec-alcohols. This biotransformation is achieved in a sequential manner using CAL-B to affect the kinetic resolution, followed by a simple acidic extractive work-up furnishing both KR products with excellent enantioselectivity (E>200; up to 98 % ee). The elaborated method eliminates a single-use silica gel chromatographic separation and significantly reduces organic solvent consumption to foster a more environmentally friendly chemical industry.
Collapse
Affiliation(s)
- Beata Zdun
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| |
Collapse
|
2
|
Pinetre C, Harfouche L, Brandel C, Bendeif EE, Sanselme M, Cartigny Y, Couvrat N, Dupray V. Investigation of the Binary System of Proxyphylline Enantiomers: Structural Resolution and Phase Diagram Determination. Mol Pharm 2024; 21:845-853. [PMID: 38134443 DOI: 10.1021/acs.molpharmaceut.3c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The solid-state landscape of proxyphylline (PXL), a chiral derivative of theophylline crystallizing as a racemic compound, was extensively investigated by means of thermal analyses and diffraction techniques. This study revealed the presence of five distinct polymorphic forms that were characterized: two polymorphs of the racemic mixture and three polymorphs of the pure enantiomer. The nature of each solid phase was confirmed by combining the different analytical techniques, revealing the presence of a thermodynamically stable racemic compound, RI (TFus= 134 °C), in equilibrium with the stable enantiopure crystal form, EI (TFus = 148.3 °C). Additionally, other crystal forms could be evidenced: a polymorph of the racemic compound, RII (TFus= 111.5 °C), as well as two metastable conglomerates, cEI and cEII, and two other polymorphs of the pure enantiomer, EII and EIII. The crystal structures of RI and EI are reported and discussed, highlighting the diversity of molecular conformations that can be adopted by the PXL molecule, which accounts for the versatility of the crystallization behaviors observed in this system. These findings enhance our understanding of the crystallization behavior of chiral pharmaceutical compounds and have implications for optimizing their crystallization processes in the pharmaceutical industry.
Collapse
Affiliation(s)
- Clément Pinetre
- Univ Rouen Normandie, Normandie Univ, SMS, UR 3233, F-76000 Rouen, France
| | - Lina Harfouche
- Univ Rouen Normandie, Normandie Univ, SMS, UR 3233, F-76000 Rouen, France
| | - Clément Brandel
- Univ Rouen Normandie, Normandie Univ, SMS, UR 3233, F-76000 Rouen, France
| | | | - Morgane Sanselme
- Univ Rouen Normandie, Normandie Univ, SMS, UR 3233, F-76000 Rouen, France
| | - Yohann Cartigny
- Univ Rouen Normandie, Normandie Univ, SMS, UR 3233, F-76000 Rouen, France
| | - Nicolas Couvrat
- Univ Rouen Normandie, Normandie Univ, SMS, UR 3233, F-76000 Rouen, France
| | - Valérie Dupray
- Univ Rouen Normandie, Normandie Univ, SMS, UR 3233, F-76000 Rouen, France
| |
Collapse
|
3
|
Zdun B, Reiter T, Kroutil W, Borowiecki P. Chemoenzymatic Synthesis of Tenofovir. J Org Chem 2023; 88:11045-11055. [PMID: 37467462 PMCID: PMC10407936 DOI: 10.1021/acs.joc.3c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 07/21/2023]
Abstract
We report on novel chemoenzymatic routes toward tenofovir using low-cost starting materials and commercial or homemade enzyme preparations as biocatalysts. The biocatalytic key step was accomplished either via stereoselective reduction using an alcohol dehydrogenase or via kinetic resolution using a lipase. By employing a suspension of immobilized lipase from Burkholderia cepacia (Amano PS-IM) in a mixture of vinyl acetate and toluene, the desired (R)-ester (99% ee) was obtained on a 500 mg scale (60 mM) in 47% yield. Alternatively, stereoselective reduction of 1-(6-chloro-9H-purin-9-yl) propan-2-one (84 mg, 100 mM) catalyzed by lyophilized E. coli cells harboring recombinant alcohol dehydrogenase (ADH) from Lactobacillus kefir (E. coli/Lk-ADH Prince) allowed one to reach quantitative conversion, 86% yield and excellent optical purity (>99% ee) of the corresponding (R)-alcohol. The key (R)-intermediate was transformed into tenofovir through "one-pot" aminolysis-hydrolysis of (R)-acetate in NH3-saturated methanol, alkylation of the resulting (R)-alcohol with tosylated diethyl(hydroxymethyl) phosphonate, and bromotrimethylsilane (TMSBr)-mediated cleavage of the formed phosphonate ester into the free phosphonic acid. The elaborated enzymatic strategy could be applicable in the asymmetric synthesis of tenofovir prodrug derivatives, including 5'-disoproxil fumarate (TDF, Viread) and 5'-alafenamide (TAF, Vemlidy). The molecular basis of the stereoselectivity of the employed ADHs was revealed by molecular docking studies.
Collapse
Affiliation(s)
- Beata Zdun
- Laboratory
of Biocatalysis and Biotransformation, Department of Drugs Technology
and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| | - Tamara Reiter
- Institute
of Chemistry, University of Graz, NAWI Graz,
BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz,
BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Paweł Borowiecki
- Laboratory
of Biocatalysis and Biotransformation, Department of Drugs Technology
and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| |
Collapse
|
4
|
Chemoenzymatic Synthesis of Optically Active Alcohols Possessing 1,2,3,4-Tetrahydroquinoline Moiety Employing Lipases or Variants of the Acyltransferase from Mycobacterium smegmatis. Catalysts 2022. [DOI: 10.3390/catal12121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The enzymatic kinetic resolution (EKR) of racemic alcohols or esters is a broadly recognized methodology for the preparation of these compounds in optically active form. Although EKR approaches have been developed for the enantioselective transesterification of a vast number of secondary alcohols or hydrolysis of their respective esters, to date, there is no report of bio- or chemo-catalytic asymmetric synthesis of non-racemic alcohols possessing 1,2,3,4-tetrahydroquinoline moiety, which are valuable building blocks for the pharmaceutical industry. In this work, the kinetic resolution of a set of racemic 1,2,3,4-tetrahydroquinoline-propan-2-ols was successfully carried out in neat organic solvents (in the case of CAL-B and BCL) or in water (in the case of MsAcT single variants) using immobilized lipases from Candida antarctica type B (CAL-B) and Burkholderia cepacia (BCL) or engineered acyltransferase variants from Mycobacterium smegmatis (MsAcT) as the biocatalysts and vinyl acetate as irreversible acyl donor, yielding enantiomerically enriched (S)-alcohols and the corresponding (R)-acetates with E-values up to 328 and excellent optical purities (>99% ee). In general, higher ee-values were observed in the reactions catalyzed by lipases; however, the rates of the reactions were significantly better in the case of MsAcT-catalyzed enantioselective transesterifications. Interestingly, we have experimentally proved that enantiomerically enriched 1-(7-nitro-3,4-dihydroquinolin-1(2H)-yl)propan-2-ol undergoes spontaneous amplification of optical purity under achiral chromatographic conditions.
Collapse
|
5
|
Resolution of Racemic Aryloxy-Propan-2-yl Acetates via Lipase-Catalyzed Hydrolysis: Preparation of Enantiomerically Pure/Enantioenriched Mexiletine Intermediates and Analogs. Catalysts 2022. [DOI: 10.3390/catal12121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The lipase kinetic resolution (KR) of aryloxy-propan-2-yl acetates, via hydrolysis, produced enantiomerically pure/enantioenriched mexiletine intermediates and analogs. Racemic acetates rac-1-(2,6-dimethylphenoxy)propan-2-yl acetate (rac-5a), rac-1-(2,4-dimethylphenoxy)propan-2-yl acetate (rac-5b), rac-1-(o-tolyloxy)propan-2-yl acetate (rac-5c) and rac-1-(naphthalen-1-yloxy)propan-2-yl acetate (rac-5d) were used as substrates. A preliminary screening (24 h, phosphate buffer pH 7.0 with 20% acetonitrile as co-solvent, 30 °C and enzyme:substrate ratio of 2:1, m:m) was carried out with twelve lipases using acetate 5a as substrate. Two enzymes stood out in the KR of 5a, the Amano AK lipase from Pseudomonas fluorescens and lipase from Thermomyces lanuginosus (TLL) immobilized on Immobead 150. Under these conditions, both the (R)-1-(2,6-dimethylphenoxy)propan-2-ol [(R)-4a] and the remaining (S)-1-(2,6-dimethylphenoxy)propan-2-yl acetate [(S)-5a] were obtained with enantiomeric excess (ee) > 99%, 50% conversion and enantiomeric ratio (E) > 200. The KR study was expanded to racemic acetates 5b-d, leading to the corresponding chiral remaining acetates with ≥95% ee, and the alcohols 4b-d with ≥98% ee, and conversion values close to 50%. The best conditions for KRs of rac-5b-d involved the use of lipase from P. fluorescens or TLL immobilized on Immobead 150, 24 or 48 h and 30 °C. These intermediates had their absolute configurations determined using 1H NMR spectroscopy (Mosher’s method), showing that the KRs of these acetates obeyed the Kazlauskas’ rule. Molecular docking studies corroborated the experimental results, indicating a preference for the hydrolysis of (R)-5a-d.
Collapse
|
6
|
Biocatalytic hydrogen-transfer to access enantiomerically pure proxyphylline, xanthinol, and diprophylline. Bioorg Chem 2022; 127:105967. [DOI: 10.1016/j.bioorg.2022.105967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/24/2022]
|
7
|
Borowiecki P, Rudzka A, Reiter T, Kroutil W. Chemoenzymatic deracemization of lisofylline catalyzed by a (laccase/TEMPO)-alcohol dehydrogenase system. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00145d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This article reports on a novel biocatalytic method for the synthesis of both enantiomers of lisofylline based on Trametes versicolor laccase, TEMPO as a redox mediator and stereocomplementary recombinant alcohol dehydrogenases as biocatalysts.
Collapse
Affiliation(s)
- Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa St. 75, 00-662 Warsaw, Poland
| | - Aleksandra Rudzka
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa St. 75, 00-662 Warsaw, Poland
| | - Tamara Reiter
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
8
|
Ortega‐Rojas MA, Castillo E, Razo‐Hernández RS, Pastor N, Juaristi E, Escalante J. Effect of the Substituent and Amino Group Position on the Lipase‐Catalyzed Resolution of γ‐Amino Esters: A Molecular Docking Study Shedding Light on
Candida antarctica
lipase B Enantioselectivity. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marina A. Ortega‐Rojas
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Edmundo Castillo
- Departamento de Ingeniería Celular y Biocatálisis Instituto de Biotecnología UNAM Apartado Postal 510–3 C.P. 62271 Cuernavaca Morelos México
| | - Rodrigo Said Razo‐Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Nina Pastor
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Eusebio Juaristi
- Departamento de Química Centro de Investigación y de Estudios Avanzados Av. Instituto Politécnico Nacional No. 2508 07360 Ciudad de México México
- El Colegio Nacional Luis González Obregón 23, Centro Histórico 06020 Ciudad de México México
| | - Jaime Escalante
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| |
Collapse
|
9
|
Trapp C, Barková K, Pecyna MJ, Herrmann C, Fuchs A, Greif D, Hofrichter M. Deracemization of diastereomerically pure syn- and anti-α-substituted β-hydroxyesters by Novozyme 435 lipase and determination of their absolute configuration by NMR spectroscopy. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Borowiecki P, Zdun B, Dranka M. Chemoenzymatic enantioselective and stereo-convergent syntheses of lisofylline enantiomers via lipase-catalyzed kinetic resolution and optical inversion approach. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Borowiecki P, Młynek M, Dranka M. Chemoenzymatic synthesis of enantiomerically enriched diprophylline and xanthinol nicotinate. Bioorg Chem 2020; 106:104448. [PMID: 33229120 DOI: 10.1016/j.bioorg.2020.104448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023]
Abstract
A concise chemoenzymatic route toward enantiomerically enriched active pharmaceutical ingredients (API) - diprophylline and xanthinol nicotinate - is reported for the first time. The decisive step is an enantioselective lipase-mediated methanolysis of racemic chlorohydrin-synthon acetate, namely 1-chloro-3-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)propan-2-yl acetate, performed under kinetically-controlled conditions on a preparative 500 mg-scale. The best results in terms of reaction enantioselectivity (E = 14) were obtained for the enantiomers resolution performed with lipase type B from Candida antarctica immobilized on acrylic resin (CAL-B, Novozym 435) suspended in homophasic acetonitrile-methanol mixture. The elaborated biocatalytic system furnished the key chlorohydrin intermediate (in 71% ee and 38% yield), which was then smoothly converted into enantioenriched active agents: (R)-(-)-diprophylline (57% ee) and (S)-(+)-xanthinol nicotinate (65% ee). To support the assignment of absolute configurations of EKR-products as well as to confirm the stereochemical outcome of the remaining reaction steps, docking studies toward the prediction of enantiomers binding selectivity in CAL-B active site as well as the respective chemical correlations with enantiomerically enriched analytical standards obtained from commercially available (R)-(-)-epichlorohydrin, were applied. In addition, single-crystal X-ray diffraction (XRD) analyses were performed for the synthesized optically active APIs furnishing by this manner a first crystal structures of nicotinic acid salt of xanthinol.
Collapse
Affiliation(s)
- Paweł Borowiecki
- Warsaw University of Technology, Department of Drugs Technology and Biotechnology, Laboratory of Biocatalysis and Biotransformations, Koszykowa St. 75, 00-662 Warsaw, Poland.
| | - Mateusz Młynek
- Warsaw University of Technology, Department of Drugs Technology and Biotechnology, Laboratory of Biocatalysis and Biotransformations, Koszykowa St. 75, 00-662 Warsaw, Poland
| | - Maciej Dranka
- Warsaw University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry and Solid State Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
12
|
Su A, Kiokekli S, Naviwala M, Shirke AN, Pavlidis IV, Gross RA. Cutinases as stereoselective catalysts: Specific activity and enantioselectivity of cutinases and lipases for menthol and its analogs. Enzyme Microb Technol 2020; 133:109467. [PMID: 31874689 DOI: 10.1016/j.enzmictec.2019.109467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
The specific activity and enantioselectivity of immobilized cutinases from Aspergillus oryzae (AoC) and Humicola insolens (HiC) were compared with those of lipases from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML) and Lipase B from Candida antarctica (CALB) for menthol and its analogs that include isopulegol, trans-2-tert-butylcyclohexanol (2TBC), and dihydrocarveol (DHC). Common features of these alcohols are two bulky substituents: a cyclohexyl ring and an alkyl substituent. Dissimilarities are that the alkyl group reside at different positions or have dissimilar structures. The aim was to develop an understanding at a molecular level of similarities and differences in the catalytic behavior of the selected cutinases and lipases as a function of substrate structural elements. The experimental results reflect the (-)-enantioselectivity for AoC, HiC, TLL, and RML, while CALB is only active on DHC with (+)-enantioselectivity. In most cases, AoC has the highest activity while HiC is significantly more active than other enzymes on 2TBC. The E values of AoC, HiC, TLL, and RML for menthol are 27.8, 16.5, 155, and 125, respectively. HiC has a higher activity (>10-fold) on (-)-2TBC than AoC while they exhibit similar activities on menthol. Docking results reveal that the bulky group adjacent to the hydroxyl group determines the enantioselectivity of AoC, HiC, TLL, and RML. Amino acid residues that dominate the enantioselectivity of these enzymes are AoC's Phe195 aromatic ring; HiC's hydrophobic Leu 174 and Ile 169 groups; TLL's ring structures of Trp89, His258 and Tyr21; and Trp88 for RML. Results of this study highlight that cutinases can provide important advantages relative to lipases for enantioselective transformation, most notably with bulky and sterically hindered substrates.
Collapse
Affiliation(s)
- An Su
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Department of Biological Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA
| | - Serpil Kiokekli
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Mariam Naviwala
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Abhijit N Shirke
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Department of Biological Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA
| | - Ioannis V Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece.
| | - Richard A Gross
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Department of Biological Sciences, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| |
Collapse
|
13
|
Harfouche LC, Brandel C, Cartigny Y, Ter Horst JH, Coquerel G, Petit S. Enabling Direct Preferential Crystallization in a Stable Racemic Compound System. Mol Pharm 2019; 16:4670-4676. [PMID: 31545612 DOI: 10.1021/acs.molpharmaceut.9b00805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The preparative resolution by preferential crystallization (PC) of proxyphylline has been achieved despite the existence of a stable racemic compound. This is enabled through the careful selection of a solvent in which both the racemic compound and the metastable conglomerate possess a low nucleation rate. Induction time measurements in isobutyl alcohol show that a highly supersaturated solution (β = 2.3) remains clear for almost 1 h at 20 mL scale, revealing a slow nucleation rate. Seeding the supersaturated solution with the pure enantiomer triggered its crystallization both isothermal and polythermic modes of PC were successfully implemented. Alongside the reported case of diprophylline, this study opens opportunities to broaden the application of PC toward slowly crystallizing racemic compounds.
Collapse
Affiliation(s)
- Lina C Harfouche
- UFR des Sciences et Techniques, Laboratoire SMS-EA3233 , Universite de Rouen Normandie , Place Emile Blondel , Mont-Saint-Aignan 76821 , France
| | - Clément Brandel
- UFR des Sciences et Techniques, Laboratoire SMS-EA3233 , Universite de Rouen Normandie , Place Emile Blondel , Mont-Saint-Aignan 76821 , France
| | - Yohann Cartigny
- UFR des Sciences et Techniques, Laboratoire SMS-EA3233 , Universite de Rouen Normandie , Place Emile Blondel , Mont-Saint-Aignan 76821 , France
| | - Joop H Ter Horst
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), Technology and Innovation Centre , University of Strathclyde , 99 George Street , Glasgow G1 1RD , U.K
| | - Gérard Coquerel
- UFR des Sciences et Techniques, Laboratoire SMS-EA3233 , Universite de Rouen Normandie , Place Emile Blondel , Mont-Saint-Aignan 76821 , France
| | - Samuel Petit
- UFR des Sciences et Techniques, Laboratoire SMS-EA3233 , Universite de Rouen Normandie , Place Emile Blondel , Mont-Saint-Aignan 76821 , France
| |
Collapse
|
14
|
Yamada A, Kamada K, Ueda T, Hyodo T, Shimizu Y, Soh N. Enhanced catalytic activity and thermal stability of lipase bound to oxide nanosheets. RSC Adv 2018; 8:20347-20352. [PMID: 35541646 PMCID: PMC9080826 DOI: 10.1039/c8ra03558j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/25/2018] [Indexed: 01/09/2023] Open
Abstract
The present study reports the effects of binding of lipase, which is an inexpensive digestive enzyme (candida antarctica lipase) that catalyzes the hydrolysis reaction and is frequently utilized for artificial synthesis of a variety of organic molecules, to titanate nanosheets (TNSs) on their biocatalytic activities and stabilities under several lipase concentrations. TNSs were prepared through a hydrolysis reaction of titanium tetraisopropoxide (TTIP) with tetrabutylammonium hydroxide (TBAOH), resulting in formation of a colorless and transparent colloidal solution including TNSs with nanometric dimensions (hydrodynamic diameter: ca. 5.6 nm). TNSs were bound to lipase molecules through electrostatic interaction in an aqueous phase at an appropriate pH, forming inorganic-bio nanohybrids (lipase-TNSs). The enzymatic reaction rate for hydrolysis of p-nitrophenyl acetate (pNPA) catalyzed by the lipase-TNSs, especially in diluted lipase concentrations, was significantly improved more than 8 times as compared with free lipase. On the other hand, it was confirmed that heat tolerance of lipase was also improved by binding to TNSs. These results suggest that the novel lipase-TNSs proposed here have combined enhancements of the catalytic activity and the anti-denaturation stability of lipase.
Collapse
Affiliation(s)
- Akane Yamada
- Department of Chemistry and Materials Engineering, Graduate School of Engineering, Nagasaki University Nagasaki 852-8521 Japan
| | - Kai Kamada
- Department of Chemistry and Materials Engineering, Graduate School of Engineering, Nagasaki University Nagasaki 852-8521 Japan
| | - Taro Ueda
- Department of Chemistry and Materials Engineering, Graduate School of Engineering, Nagasaki University Nagasaki 852-8521 Japan
| | - Takeo Hyodo
- Department of Chemistry and Materials Engineering, Graduate School of Engineering, Nagasaki University Nagasaki 852-8521 Japan
| | - Yasuhiro Shimizu
- Department of Chemistry and Materials Engineering, Graduate School of Engineering, Nagasaki University Nagasaki 852-8521 Japan
| | - Nobuaki Soh
- Faculty of Agriculture, Saga University Saga 840-8502 Japan
| |
Collapse
|
15
|
Borowiecki P, Wińska P, Bretner M, Gizińska M, Koronkiewicz M, Staniszewska M. Synthesis of novel proxyphylline derivatives with dual Anti-Candida albicans and anticancer activity. Eur J Med Chem 2018. [PMID: 29533875 DOI: 10.1016/j.ejmech.2018.02.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three out of 16 newly synthesized 1,3-dimethylxanthine derivatives (proxyphylline analogues) exhibited consistencies between antifungal and anticancer properties. Proxyphylline possessing 1-(10H-phenothiazin-10-yl)propan-2-yl (6) and polybrominated benzimidazole (41) or benzotriazole moiety (42) remained selectively cidal against Candida albicans (lg R ≥ 3 at conc. of 31, 36 and 20 μM, respectively) however not against normal mammalian Vero cell line in vitro (IC50 ≥ 280 μM) and Galleria mellonella in vivo. These compounds also displayed moderate antineoplastic activity against human breast adenocarcinoma (MCF-7) cell line (EC50 = 80 μM) and high against peripheral blood T lymphoblast (CCRF-CEM) (EC50 = 6.3-6.5 μM). In addition, 6 and 42 exerted: (1) dual activity against fungal adhesion and damage mature biofilm; (2) necrosis of planktonic cells due to loss of membrane function and of structural integrity; (3) biochemical (inhibition of sessile cell respiration) and morphological changes in cell wall polysaccharide contents. Therefore, leading proxyphylline derivatives can be employed to prevent cancer-associated biofilm Candida infections.
Collapse
Affiliation(s)
- Paweł Borowiecki
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Patrycja Wińska
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Maria Bretner
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Małgorzata Gizińska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | | | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| |
Collapse
|
16
|
Wawro AM, Aoki Y, Muraoka T, Tsumoto K, Kinbara K. Enzymatically cleavable traceless biotin tags for protein PEGylation and purification. Chem Commun (Camb) 2018; 54:1913-1916. [DOI: 10.1039/c7cc05814d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immobilized lipase was successfully employed for the rapid removal of a biotin tag from a protein–PEG conjugate under mild conditions.
Collapse
Affiliation(s)
- Adam M. Wawro
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
- Department of Bioengineering
| | - Yusuke Aoki
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Takahiro Muraoka
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
- PRESTO
| | - Kouhei Tsumoto
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo 108-8656
- Japan
| | - Kazushi Kinbara
- School of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| |
Collapse
|
17
|
Lipases in asymmetric transformations: Recent advances in classical kinetic resolution and lipase–metal combinations for dynamic processes. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Borowiecki P, Dranka M, Ochal Z. Lipase-Catalyzed Kinetic Resolution ofN-Substituted 1-(β-Hydroxypropyl)indoles by Enantioselective Acetylation. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Paweł Borowiecki
- Faculty of Chemistry; Department of Drugs Technology and Biotechnology; Warsaw University of Technology; Koszykowa St. 3 00-664 Warsaw Poland
| | - Maciej Dranka
- Faculty of Chemistry; Department of Drugs Technology and Biotechnology; Warsaw University of Technology; Koszykowa St. 3 00-664 Warsaw Poland
| | - Zbigniew Ochal
- Faculty of Chemistry; Department of Drugs Technology and Biotechnology; Warsaw University of Technology; Koszykowa St. 3 00-664 Warsaw Poland
| |
Collapse
|
19
|
Bhardwaj KK, Gupta R. Synthesis of Chirally Pure Enantiomers by Lipase. J Oleo Sci 2017; 66:1073-1084. [DOI: 10.5650/jos.ess17114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University
| |
Collapse
|