1
|
Azarkh M, Keller K, Qi M, Godt A, Yulikov M. How accurately defined are the overtone coefficients in Gd(III)-Gd(III) RIDME? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 339:107217. [PMID: 35453095 DOI: 10.1016/j.jmr.2022.107217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Relaxation-induced dipolar modulation enhancement (RIDME) is a pulse EPR technique that is particularly suitable to determine distances between paramagnetic centers with a broad EPR spectrum, e.g. metal-ion-based ones. As far as high-spin systems (S > ½) are concerned, the RIDME experiment provides not only the basic dipolar frequency but also its overtones, which complicates the determination of interspin distances. Here, we present and discuss in a step-by-step fashion an r.m.s.d.-based approach for the calibration of the overtone coefficients for a series of molecular rulers doubly labeled with Gd(III)-PyMTA tags. The constructed 2D total-penalty diagrams help revealing that there is no unique set of overtone coefficients but rather a certain pool, which can be used to extract distance distributions between high-spin paramagnetic centers, as determined from the RIDME experiment. This is of particular importance for comparing RIDME overtone calibration and distance distributions obtained in different labs.
Collapse
Affiliation(s)
- Mykhailo Azarkh
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Katharina Keller
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|
2
|
Soetbeer J, Millen M, Zouboulis K, Hülsmann M, Godt A, Polyhach Y, Jeschke G. Dynamical decoupling in water-glycerol glasses: a comparison of nitroxides, trityl radicals and gadolinium complexes. Phys Chem Chem Phys 2021; 23:5352-5369. [PMID: 33635938 DOI: 10.1039/d1cp00055a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our previous study on nitroxides in o-terphenyl (OTP) revealed two separable decoherence processes at low temperatures, best captured by the sum of two stretched exponentials (SSE) model. Dynamical decoupling (DD) extends both associated dephasing times linearly for 1 to 5 refocusing pulses [Soetbeer et al., Phys. Chem. Chem. Phys., 2018, 20, 1615]. Here we demonstrate an analogous DD behavior of water-soluble nitroxides in water-glycerol glass by using nitroxide and/or solvent deuteration for component assignment. Compared to the conventional Hahn experiment, we show that Carr-Purcell and Uhrig DD schemes are superior in resolving and identifying active dephasing mechanisms. Thereby, we observe a partial coherence loss to intramolecular nitroxide and trityl nuclei that can be alleviated, while the zero field splitting-induced losses for gadolinium labels cannot be refocused and contribute even at the central transition of this spin-7/2 system. Independent of the studied spin system, Uhrig DD leads to a characteristic convex dephasing envelope in both protonated water-glycerol and OTP glass, thus outperforming the Carr-Purcell scheme.
Collapse
Affiliation(s)
- Janne Soetbeer
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Marthe Millen
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Konstantin Zouboulis
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Miriam Hülsmann
- Bielefeld University, Department of Chemistry, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Adelheid Godt
- Bielefeld University, Department of Chemistry, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| |
Collapse
|
3
|
EL Mkami H, Hunter R, Cruickshank P, Taylor M, Lovett J, Feintuch A, Qi M, Godt A, Smith G. High-sensitivity Gd 3+-Gd 3+ EPR distance measurements that eliminate artefacts seen at short distances. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:301-313. [PMID: 37904818 PMCID: PMC10500690 DOI: 10.5194/mr-1-301-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/18/2020] [Indexed: 11/01/2023]
Abstract
Gadolinium complexes are attracting increasing attention as spin labels for EPR dipolar distance measurements in biomolecules and particularly for in-cell measurements. It has been shown that flip-flop transitions within the central transition of the high-spin Gd3 + ion can introduce artefacts in dipolar distance measurements, particularly when measuring distances less than 3 nm. Previous work has shown some reduction of these artefacts through increasing the frequency separation between the two frequencies required for the double electron-electron resonance (DEER) experiment. Here we use a high-power (1 kW), wideband, non-resonant system operating at 94 GHz to evaluate DEER measurement protocols using two stiff Gd(III) rulers, consisting of two b i s -Gd3 + -PyMTA complexes, with separations of 2.1 nm and 6.0 nm, respectively. We show that by avoiding the - 1 2 → 1 2 central transition completely, and placing both the pump and the observer pulses on either side of the central transition, we can now observe apparently artefact-free spectra and narrow distance distributions, even for a Gd-Gd distance of 2.1 nm. Importantly we still maintain excellent signal-to-noise ratio and relatively high modulation depths. These results have implications for in-cell EPR measurements at naturally occurring biomolecule concentrations.
Collapse
Affiliation(s)
- Hassane EL Mkami
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Robert I. Hunter
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Paul A. S. Cruickshank
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Michael J. Taylor
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Janet E. Lovett
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science,
Rehovot, Israel
| | - Mian Qi
- Faculty of Chemistry and Center of Molecular Materials (CM2),
Bielefeld University, Universitätsstraße 25, 33615 Bielefeld,
Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center of Molecular Materials (CM2),
Bielefeld University, Universitätsstraße 25, 33615 Bielefeld,
Germany
| | - Graham M. Smith
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| |
Collapse
|
4
|
Teucher M, Qi M, Cati N, Hintz H, Godt A, Bordignon E. Strategies to identify and suppress crosstalk signals in double electron-electron resonance (DEER) experiments with gadolinium III and nitroxide spin-labeled compounds. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:285-299. [PMID: 37904822 PMCID: PMC10500692 DOI: 10.5194/mr-1-285-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/31/2020] [Indexed: 11/01/2023]
Abstract
Double electron-electron resonance (DEER) spectroscopy applied to orthogonally spin-labeled biomolecular complexes simplifies the assignment of intra- and intermolecular distances, thereby increasing the information content per sample. In fact, various spin labels can be addressed independently in DEER experiments due to spectroscopically nonoverlapping central transitions, distinct relaxation times, and/or transition moments; hence, they are referred to as spectroscopically orthogonal. Molecular complexes which are, for example, orthogonally spin-labeled with nitroxide (NO) and gadolinium (Gd) labels give access to three distinct DEER channels that are optimized to selectively probe NO-NO, NO-Gd, and Gd-Gd distances. Nevertheless, it has been previously recognized that crosstalk signals between individual DEER channels can occur, for example, when a Gd-Gd distance appears in a DEER channel optimized to detect NO-Gd distances. This is caused by residual spectral overlap between NO and Gd spins which, therefore, cannot be considered as perfectly orthogonal. Here, we present a systematic study on how to identify and suppress crosstalk signals that can appear in DEER experiments using mixtures of NO-NO, NO-Gd, and Gd-Gd molecular rulers characterized by distinct, nonoverlapping distance distributions. This study will help to correctly assign the distance peaks in homo- and heterocomplexes of biomolecules carrying not perfectly orthogonal spin labels.
Collapse
Affiliation(s)
- Markus Teucher
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Ninive Cati
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
5
|
Wili N, Hintz H, Vanas A, Godt A, Jeschke G. Distance measurement between trityl radicals by pulse dressed electron paramagnetic resonance with phase modulation. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:75-87. [PMID: 37904888 PMCID: PMC10500722 DOI: 10.5194/mr-1-75-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/29/2020] [Indexed: 11/01/2023]
Abstract
Distance measurement in the nanometre range is among the most important applications of pulse electron paramagnetic resonance today, especially in biological applications. The longest distance that can be measured by all presently used pulse sequences is determined by the phase memory time T m of the observed spins. Here we show that one can measure the dipolar coupling during strong microwave irradiation by using an appropriate frequency- or phase-modulation scheme, i.e. by applying pulse sequences in the nutating frame. This decouples the electron spins from the surrounding nuclear spins and thus leads to significantly longer relaxation times of the microwave-dressed spins (i.e. the rotating frame relaxation times T 1 ρ and T 2 ρ ) compared to T m . The electron-electron dipolar coupling is not decoupled as long as both spins are excited, which can be implemented for trityl radicals at Q-band frequencies (35 GHz, 1.2 T). We show results for two bis-trityl rulers with inter-electron distances of about 4.1 and 5.3 nm and discuss technical challenges and possible next steps.
Collapse
Affiliation(s)
- Nino Wili
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Agathe Vanas
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Keller K, Ritsch I, Hintz H, Hülsmann M, Qi M, Breitgoff FD, Klose D, Polyhach Y, Yulikov M, Godt A, Jeschke G. Accessing distributions of exchange and dipolar couplings in stiff molecular rulers with Cu(ii) centres. Phys Chem Chem Phys 2020; 22:21707-21730. [DOI: 10.1039/d0cp03105d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel approaches to quantitatively analyse distributed exchange couplings are described and tested on experimental data sets for stiff synthetic molecules.
Collapse
|
7
|
Breitgoff FD, Keller K, Qi M, Klose D, Yulikov M, Godt A, Jeschke G. UWB DEER and RIDME distance measurements in Cu(II)-Cu(II) spin pairs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106560. [PMID: 31377151 DOI: 10.1016/j.jmr.2019.07.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Distance determination by Electron Paramagnetic Resonance (EPR) based on measurements of the dipolar coupling are technically challenging for electron spin systems with broad spectra due to comparatively narrow microwave pulse excitation bandwidths. With Na4[{CuII(PyMTA)}-(stiff spacer)-{CuII(PyMTA)}] as a model compound, we compared DEER and RIDME measurements and investigated the use of frequency-swept pulses. We found very large improvements in sensitivity when substituting the monochromatic pump pulse by a frequency-swept one in DEER experiments with monochromatic observer pulses. This effect was especially strong in X band, where nearly the whole spectrum can be included in the experiment. The RIDME experiment is characterised by a trade-off in signal intensity and modulation depth. Optimal parameters are further influenced by varying steepness of the background decay. A simple 2-point optimization experiment was found to serve as good estimate to identify the mixing time of highest sensitivity. Using frequency-swept pulses in the observer sequences resulted in lower SNR in both the RIDME and the DEER experiment. Orientation selectivity was found to vary in both experiments with the detection position as well as with the settings of the pump pulse in DEER. In RIDME, orientation selection by relaxation anisotropy of the inverted spin appeared to be negligible as form factors remain relatively constant with varying mixing time. This reduces the overall observed orientation selection to the one given by the detection position. Field-averaged data from RIDME and DEER with a shaped pump pulse resulted in the same dipolar spectrum. We found that both methods have their advantages and disadvantages for given instrumental limitations and sample properties. Thus the choice of method depends on the situation at hand and we discuss which parameters should be considered for optimization.
Collapse
Affiliation(s)
- Frauke D Breitgoff
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Katharina Keller
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Daniel Klose
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Maxim Yulikov
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Gunnar Jeschke
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| |
Collapse
|
8
|
Azarkh M, Bieber A, Qi M, Fischer JW, Yulikov M, Godt A, Drescher M. Gd(III)-Gd(III) Relaxation-Induced Dipolar Modulation Enhancement for In-Cell Electron Paramagnetic Resonance Distance Determination. J Phys Chem Lett 2019; 10:1477-1481. [PMID: 30864799 PMCID: PMC6625747 DOI: 10.1021/acs.jpclett.9b00340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/13/2019] [Indexed: 05/26/2023]
Abstract
In-cell distance determination by electron paramagnetic resonance (EPR) spectroscopy reveals essential structural information about biomacromolecules under native conditions. We demonstrate that the pulsed EPR technique RIDME (relaxation induced dipolar modulation enhancement) can be utilized for such distance determination. The performance of in-cell RIDME has been assessed at Q-band using stiff molecular rulers labeled with Gd(III)-PyMTA and microinjected into Xenopus laevis oocytes. The overtone coefficients are determined to be the same for protonated aqueous solutions and inside cells. As compared to in-cell DEER (double electron-electron resonance, also abbreviated as PELDOR), in-cell RIDME features approximately 5 times larger modulation depth and does not show artificial broadening in the distance distributions due to the effect of pseudosecular terms.
Collapse
Affiliation(s)
- Mykhailo Azarkh
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Anna Bieber
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Mian Qi
- Faculty
of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Jörg W.
A. Fischer
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Maxim Yulikov
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Adelheid Godt
- Faculty
of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Malte Drescher
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
9
|
Hintz H, Vanas A, Klose D, Jeschke G, Godt A. Trityl Radicals with a Combination of the Orthogonal Functional Groups Ethyne and Carboxyl: Synthesis without a Statistical Step and EPR Characterization. J Org Chem 2019; 84:3304-3320. [DOI: 10.1021/acs.joc.8b03234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Agathe Vanas
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
10
|
Ritsch I, Hintz H, Jeschke G, Godt A, Yulikov M. Improving the accuracy of Cu(ii)–nitroxide RIDME in the presence of orientation correlation in water-soluble Cu(ii)–nitroxide rulers. Phys Chem Chem Phys 2019; 21:9810-9830. [DOI: 10.1039/c8cp06573j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Detailed analysis of artefacts in the Cu(ii)–nitroxide RIDME experiments, related to orientation averaging, echo-crossing, ESEEM and background-correction is presented.
Collapse
Affiliation(s)
- Irina Ritsch
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
11
|
von Zons T, Brokmann L, Lippke J, Preuße T, Hülsmann M, Schaate A, Behrens P, Godt A. Postsynthetic Modification of Metal–Organic Frameworks through Nitrile Oxide–Alkyne Cycloaddition. Inorg Chem 2018; 57:3348-3359. [DOI: 10.1021/acs.inorgchem.8b00126] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tobias von Zons
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Luisa Brokmann
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Jann Lippke
- Institute of Inorganic Chemistry and ZFM-Center for Solid State Chemistry and New Materials, Leibniz University Hannover, Callinstraße 9, 30167 Hannover, Germany
| | - Thomas Preuße
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Miriam Hülsmann
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Andreas Schaate
- Institute of Inorganic Chemistry and ZFM-Center for Solid State Chemistry and New Materials, Leibniz University Hannover, Callinstraße 9, 30167 Hannover, Germany
| | - Peter Behrens
- Institute of Inorganic Chemistry and ZFM-Center for Solid State Chemistry and New Materials, Leibniz University Hannover, Callinstraße 9, 30167 Hannover, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
12
|
Bahrenberg T, Rosenski Y, Carmieli R, Zibzener K, Qi M, Frydman V, Godt A, Goldfarb D, Feintuch A. Improved sensitivity for W-band Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements with shaped pulses. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 283:1-13. [PMID: 28834777 DOI: 10.1016/j.jmr.2017.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Chirp and shaped pulses have been recently shown to be highly advantageous for improving sensitivity in DEER (double electron-electron resonance, also called PELDOR) measurements due to their large excitation bandwidth. The implementation of such pulses for pulse EPR has become feasible due to the availability of arbitrary waveform generators (AWG) with high sampling rates to support pulse shaping for pulses with tens of nanoseconds duration. Here we present a setup for obtaining chirp pulses on our home-built W-band (95GHz) spectrometer and demonstrate its performance on Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements. We carried out an extensive optimization procedure on two model systems, Gd(III)-PyMTA-spacer-Gd(III)-PyMTA (Gd-PyMTA ruler; zero-field splitting parameter (ZFS) D∼1150MHz) as well as nitroxide-spacer-nitroxide (nitroxide ruler) to evaluate the applicability of shaped pulses to Gd(III) complexes and nitroxides, which are two important classes of spin labels used in modern DEER/EPR experiments. We applied our findings to ubiquitin, doubly labeled with Gd-DOTA-monoamide (D∼550MHz) asa model for a system with a small ZFS. Our experiments were focused on the questions (i) what are the best conditions for positioning of the detection frequency, (ii) which pump pulse parameters (bandwidth, positioning in the spectrum, length) yield the best signal-to-noise ratio (SNR) improvements when compared to classical DEER, and (iii) how do the sample's spectral parameters influence the experiment. For the nitroxide ruler, we report an improvement of up to 1.9 in total SNR, while for the Gd-PyMTA ruler the improvement was 3.1-3.4 and for Gd-DOTA-monoamide labeled ubiquitin it was a factor of 1.8. Whereas for the Gd-PyMTA ruler the two setups pump on maximum and observe on maximum gave about the same improvement, for Gd-DOTA-monoamide a significant difference was found. In general the choice of the best set of parameters depends on the D parameter of the Gd(III) complex.
Collapse
Affiliation(s)
- Thorsten Bahrenberg
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Yael Rosenski
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Koby Zibzener
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, 33615 Bielefeld, Germany
| | - Veronica Frydman
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, 33615 Bielefeld, Germany
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
13
|
Kaushik M, Qi M, Godt A, Corzilius B. Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monu Kaushik
- Goethe-Universität Frankfurt am Main; Institut für Physikalische und Theoretische Chemie; Institut für Biophysikalische Chemie und Biomolekulares Magnetresonanzzentrum (BMRZ); Max-von-Laue-Strasse 7-9 60438 Frankfurt am Main Germany
| | - Mian Qi
- Fakultät für Chemie und Centrum für Molekulare Materialien (CM 2 ); Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Adelheid Godt
- Fakultät für Chemie und Centrum für Molekulare Materialien (CM 2 ); Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Björn Corzilius
- Goethe-Universität Frankfurt am Main; Institut für Physikalische und Theoretische Chemie; Institut für Biophysikalische Chemie und Biomolekulares Magnetresonanzzentrum (BMRZ); Max-von-Laue-Strasse 7-9 60438 Frankfurt am Main Germany
| |
Collapse
|
14
|
Kaushik M, Qi M, Godt A, Corzilius B. Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization. Angew Chem Int Ed Engl 2017; 56:4295-4299. [DOI: 10.1002/anie.201612388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Monu Kaushik
- Goethe-Universität Frankfurt am Main; Institut für Physikalische und Theoretische Chemie; Institut für Biophysikalische Chemie und Biomolekulares Magnetresonanzzentrum (BMRZ); Max-von-Laue-Strasse 7-9 60438 Frankfurt am Main Germany
| | - Mian Qi
- Fakultät für Chemie und Centrum für Molekulare Materialien (CM 2 ); Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Adelheid Godt
- Fakultät für Chemie und Centrum für Molekulare Materialien (CM 2 ); Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Björn Corzilius
- Goethe-Universität Frankfurt am Main; Institut für Physikalische und Theoretische Chemie; Institut für Biophysikalische Chemie und Biomolekulares Magnetresonanzzentrum (BMRZ); Max-von-Laue-Strasse 7-9 60438 Frankfurt am Main Germany
| |
Collapse
|
15
|
Clayton JA, Qi M, Godt A, Goldfarb D, Han S, Sherwin MS. Gd 3+-Gd 3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance. Phys Chem Chem Phys 2017; 19:5127-5136. [PMID: 28139788 PMCID: PMC5394103 DOI: 10.1039/c6cp07119h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling is a very powerful tool for elucidating the structure and organization of biomolecules. Gd3+ complexes have recently emerged as a new class of spin labels for distance determination by pulsed EPR spectroscopy at Q- and W-band. We present CW EPR measurements at 240 GHz (8.6 Tesla) on a series of Gd-rulers of the type Gd-PyMTA-spacer-Gd-PyMTA, with Gd-Gd distances ranging from 1.2 nm to 4.3 nm. CW EPR measurements of these Gd-rulers show that significant dipolar broadening of the central |-1/2〉 → |1/2〉 transition occurs at 30 K for Gd-Gd distances up to ∼3.4 nm with Gd-PyMTA as the spin label. This represents a significant extension for distances accessible by CW EPR, as nitroxide-based spin labels at X-band frequencies can typically only access distances up to ∼2 nm. We show that this broadening persists at biologically relevant temperatures above 200 K, and that this method is further extendable up to room temperature by immobilizing the sample in glassy trehalose. We show that the peak-to-peak broadening of the central transition follows the expected 1/r3 dependence for the electron-electron dipolar interaction, from cryogenic temperatures up to room temperature. A simple procedure for simulating the dependence of the lineshape on interspin distance is presented, in which the broadening of the central transition is modeled as an S = 1/2 spin whose CW EPR lineshape is broadened through electron-electron dipolar interactions with a neighboring S = 7/2 spin.
Collapse
Affiliation(s)
- Jessica A Clayton
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA. and Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Bielefeld, Germany
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Songi Han
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA and Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA and Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Mark S Sherwin
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA. and Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
16
|
Keller K, Mertens V, Qi M, Nalepa AI, Godt A, Savitsky A, Jeschke G, Yulikov M. Computing distance distributions from dipolar evolution data with overtones: RIDME spectroscopy with Gd(iii)-based spin labels. Phys Chem Chem Phys 2017; 19:17856-17876. [DOI: 10.1039/c7cp01524k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extraction of distance distributions between high-spin paramagnetic centers from relaxation induced dipolar modulation enhancement (RIDME) data is affected by the presence of overtones of dipolar frequencies.
Collapse
Affiliation(s)
- Katharina Keller
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Valerie Mertens
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Anna I. Nalepa
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
17
|
Demay-Drouhard P, Chamoreau LM, Guillot R, Policar C, Bertrand HC. Synthesis of Homoditopic Ligands with an Incrementable Rodlike Backbone. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paul Demay-Drouhard
- Département de Chimie, Ecole Normale Supérieure; PSL Research University, UPMC Univ Paris 06; CNRS, Laboratoire des Biomolécules (LBM); 24 rue Lhomond 75005 Paris France
- Sorbonne Universités, UPMC Univ. Paris 06; Ecole Normale Supérieure; CNRS, Laboratoire des Biomolécules (LBM); 24 rue Lhomond 75005 Paris France
| | - Lise-Marie Chamoreau
- Institut Parisien de Chimie Moléculaire; Sorbonne Universités, UPMC Univ Paris 06; CNRS UMR 8232; 4 place Jussieu 75252 Paris France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d′Orsay; Université Paris-Sud; UMR CNRS 8182, Université Paris-Saclay; 91405 Orsay France
| | - Clotilde Policar
- Département de Chimie, Ecole Normale Supérieure; PSL Research University, UPMC Univ Paris 06; CNRS, Laboratoire des Biomolécules (LBM); 24 rue Lhomond 75005 Paris France
- Sorbonne Universités, UPMC Univ. Paris 06; Ecole Normale Supérieure; CNRS, Laboratoire des Biomolécules (LBM); 24 rue Lhomond 75005 Paris France
| | - Hélène C. Bertrand
- Département de Chimie, Ecole Normale Supérieure; PSL Research University, UPMC Univ Paris 06; CNRS, Laboratoire des Biomolécules (LBM); 24 rue Lhomond 75005 Paris France
- Sorbonne Universités, UPMC Univ. Paris 06; Ecole Normale Supérieure; CNRS, Laboratoire des Biomolécules (LBM); 24 rue Lhomond 75005 Paris France
| |
Collapse
|
18
|
Doll A, Qi M, Godt A, Jeschke G. CIDME: Short distances measured with long chirp pulses. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 273:73-82. [PMID: 27788378 DOI: 10.1016/j.jmr.2016.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
Frequency-swept pulses have recently been introduced as pump pulses into double electron-electron resonance (DEER) experiments. A limitation of this approach is that the pump pulses need to be short in comparison to dipolar evolution periods. The "chirp-induced dipolar modulation enhancement" (CIDME) pulse sequence introduced in this work circumvents this limitation by means of longitudinal storage during the application of one single or two consecutive pump pulses. The resulting six-pulse sequence is closely related to the five-pulse "relaxation-induced dipolar modulation enhancement" (RIDME) pulse sequence: While dipolar modulation in RIDME is due to stochastic spin flips during longitudinal storage, modulation in CIDME is due to the pump pulse during longitudinal storage. Experimentally, CIDME is examined for Gd-Gd and nitroxide-nitroxide distance determination using a high-power Q-band spectrometer. Since longitudinal storage results in a 50% signal loss, comparisons between DEER using short chirp pump pulses of 64ns duration and CIDME using longer pump pulses are in favor of DEER. While the lower sensitivity restrains the applicability of CIDME for routine distance determination on high-power spectrometers, this result is not to be generalized to spectrometers having lower power and to specialized "non-routine" applications or different types of spin labels. In particular, the advantage of prolonged CIDME pump pulses is demonstrated for experiments at large frequency offset between the pumped and observed spins. At a frequency separation of 1GHz, where broadening due to dipolar pseudo-secular contributions becomes largely suppressed, a Gd-Gd modulation depth larger than 10% is achieved. Moreover, a CIDME experiment at deliberately reduced power underlines the potential of the new technique for spectrometers with lower power, as often encountered at higher microwave frequencies. With longitudinal storage times T below 10μs, however, CIDME appears rather susceptible to artifacts. For nitroxide-nitroxide experiments, these currently inhibit a faithful data analysis. To facilitate further developments, the artifacts are characterized experimentally. In addition, effects that are specific to the high spin of S=7/2 Gd-centers are examined. Herein, population transfer within the observer spin's multiplet due to the pump pulse as well as excitation of dipolar harmonics are discussed.
Collapse
Affiliation(s)
- Andrin Doll
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials, Bielefeld University, Unversitätsstraße 25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials, Bielefeld University, Unversitätsstraße 25, 33615 Bielefeld, Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland.
| |
Collapse
|
19
|
Keller K, Zalibera M, Qi M, Koch V, Wegner J, Hintz H, Godt A, Jeschke G, Savitsky A, Yulikov M. EPR characterization of Mn(ii) complexes for distance determination with pulsed dipolar spectroscopy. Phys Chem Chem Phys 2016; 18:25120-25135. [DOI: 10.1039/c6cp04884f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
EPR properties of four Mn(ii) complexes and Tikhonov regularization-based analysis of RIDME data containing dipolar overtones are presented.
Collapse
Affiliation(s)
- Katharina Keller
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Michal Zalibera
- Max Planck Institut for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology in Bratislava
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Vanessa Koch
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Julia Wegner
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Anton Savitsky
- Max Planck Institut for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|