1
|
Gavit AV, Talekar SS, Mane MV, Sawant DN. Aryl Borane as a Catalyst for Dehydrative Amide Synthesis. J Org Chem 2025. [PMID: 39883055 DOI: 10.1021/acs.joc.4c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Tris(pentafluorophenyl)borane B(C6F5)3·H2O is reported as a catalyst for dehydrative amidation of carboxylic acids and amines. This protocol is applicable across a wide range of >35 substrates, including aromatic and aliphatic amines and acids, resulting in amides in ≤92% yields. The scalability of the reaction up to 10 mmol, along with the synthesis of drugs such as ibuprofen amide, moclobemide, and phenacetin, demonstrates the industrial potential of our protocol.
Collapse
Affiliation(s)
- Amit Vinayak Gavit
- CatOM Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjana S Talekar
- Centre for Nano and Material Sciences, Jain Global Campus, JAIN (Deemed-to-be University), Bangalore 562112, Karnataka, India
| | - Manoj V Mane
- Centre for Nano and Material Sciences, Jain Global Campus, JAIN (Deemed-to-be University), Bangalore 562112, Karnataka, India
| | - Dinesh Nanaji Sawant
- CatOM Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Wu Y, Zhu Q, Xu H, Yang J, Wang Y, Wang C, Hu Z, Zhang Z. Cu-UiO-66 Catalyzed Synthesis of Imines via Acceptorless Dehydrogenative Coupling of Alcohols and Amines. Chem Asian J 2025; 20:e202400984. [PMID: 39495213 DOI: 10.1002/asia.202400984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/05/2024]
Abstract
Herein, the Cu-UiO-66 catalyst was developed for acceptorless dehydrogenative coupling (ADC) between alcohols and amines to produce imines. The Cu-UiO-66 catalyst was synthesized by installing Cu2+ onto Zr-oxo clusters in UiO-66, and the catalyst efficiently catalyzes the ADC reaction under mild and environmentally friendly conditions with excellent selectivity. Mechanistic studies reveal that the O2⋅- radicals and porosity of formed in Cu-UiO-66 participate cooperatively during the catalytic cycle. Meanwhile, the only by-product of the system is environmentally benign water. Cycling tests and hot filtration tests showed that the Cu-UiO-66 catalyst exhibited excellent stability and catalytic activity during the reaction. Importantly, the Cu-UiO-66 catalyst might provide a promising strategy for the ADC reaction between alcohols and amines to produce imines.
Collapse
Affiliation(s)
- Yujuan Wu
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Qiulin Zhu
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Hongyang Xu
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Jiawei Yang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Yongfei Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Cuiping Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhizhi Hu
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| |
Collapse
|
3
|
McGrath A, Huang H, Brazeau JF, Zhang Z, Audu CO, Vellore NA, Zhu L, Shi Z, Venable JD, Gelin CF, Cernak T. Modulating the Potency of BRD4 PROTACs at the Systems Level with Amine-Acid Coupling Reactions. J Med Chem 2025; 68:405-420. [PMID: 39688565 DOI: 10.1021/acs.jmedchem.4c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Protein degradation using proteolysis targeting chimeras (PROTACs) represents a promising therapeutic strategy. PROTACs are heterobifunctional molecules that consist of a target-binding moiety and an E3 ligase binding moiety, connected by a linker. These fragments are frequently united via amide bonds. While straightforward to synthesize, amides may impart suboptimal drug properties to the overall molecule. From a systems level perspective, we envisioned that the potency of PROTACs could be modulated through selection of reaction conditions─wherein different catalysts produce distinct linkers from the same two building blocks. We present a suite of BRD4 PROTAC degraders prepared via four new amine-acid coupling reactions alongside the classic amide coupling. Our findings reveal that variations in reaction conditions affect the physicochemical properties of PROTACs, resulting in a spectrum of properties. Notably, several new PROTACs demonstrated enhanced BRD4 degradation efficacy compared to those employing amide linkers, emphasizing the potential of systems chemistry as a therapeutic optimization strategy.
Collapse
Affiliation(s)
- Andrew McGrath
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Haiyan Huang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Jean-Francois Brazeau
- Therapeutics Discovery, Janssen Research & Development, LLC, La Jolla, California 92121, United States
| | - Zirong Zhang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Christopher O Audu
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Nadeem A Vellore
- Therapeutics Discovery, Janssen Research & Development, LLC, La Jolla, California 92121, United States
| | - Lu Zhu
- Therapeutics Discovery, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Zhicai Shi
- Therapeutics Discovery, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Jennifer D Venable
- Therapeutics Discovery, Janssen Research & Development, LLC, La Jolla, California 92121, United States
| | - Christine F Gelin
- Therapeutics Discovery, Janssen Research & Development, LLC, La Jolla, California 92121, United States
| | - Tim Cernak
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| |
Collapse
|
4
|
Tang JT, Gan Y, Li X, Ye B. Regioselective reductive transamination of peptidic amides enabled by a dual Zr(IV)–H catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Li J, Huang C, Li C. Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jianbin Li
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Chia‐Yu Huang
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Chao‐Jun Li
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
6
|
Li W, Yan F, Cai S, Ding L, Li B, Zhang B, Zhang Y, Zhu L. Platinum nanoparticles as recyclable heterogeneous catalyst for selective methylation of amines and imines with formic acid: Indirect utilization of CO2. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Li J, Li CJ, Huang CY. Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angew Chem Int Ed Engl 2021; 61:e202112770. [PMID: 34780098 DOI: 10.1002/anie.202112770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/12/2022]
Abstract
Conversion of carbonyl compounds, including aldehydes, ketones and carboxylic acids, into functionalized alkanes via deoxygenation would be highly desirable from a sustainability perspective and very enabling in chemical synthesis. This review covers the recent methodology development in carbonyl and carboxyl deoxygenative functionalizations, highlighting some typical and significant contributions in this field. These advances will be categorized based on types of bond formation, and in each part, selected examples will be discussed from their generalized mechanistic perspectives. Four summarized reactivity modes of aldehydes and ketones during the deoxygenation, namely, bis-electrophile, carbenoid, bis-nucleophile and alkyl radical, are presented, while the carboxylic acids are deoxygenated mainly via activated carbonyl or acetal intermediates.
Collapse
Affiliation(s)
| | - Chao-Jun Li
- McGill University, Chemistry, 801 Sherbrooke St. West, H3A0B8, Montreal, CANADA
| | | |
Collapse
|
8
|
|
9
|
Lu C, Qiu Z, Xuan M, Huang Y, Lou Y, Zhu Y, Shen H, Lin B. Direct
N‐
Alkylation/Fluoroalkylation of Amines Using Carboxylic Acids via Transition‐Metal‐Free Catalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chunlei Lu
- School of Physical Science and Technology (SPST) ShanghaiTech University Shanghai 201210 People's Republic of China
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Zetian Qiu
- School of Physical Science and Technology (SPST) ShanghaiTech University Shanghai 201210 People's Republic of China
| | - Maojie Xuan
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201418 People's Republic of China
| | - Yan Huang
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai 201418 People's Republic of China
| | - Yongjia Lou
- School of Physical Science and Technology (SPST) ShanghaiTech University Shanghai 201210 People's Republic of China
| | - Yiling Zhu
- School of Physical Science and Technology (SPST) ShanghaiTech University Shanghai 201210 People's Republic of China
| | - Hao Shen
- School of Physical Science and Technology (SPST) ShanghaiTech University Shanghai 201210 People's Republic of China
| | - Bo‐Lin Lin
- School of Physical Science and Technology (SPST) ShanghaiTech University Shanghai 201210 People's Republic of China
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
10
|
Rabanzo-Castillo KM, Kumar VB, Söhnel T, Leitao EM. Catalytic Synthesis of Oligosiloxanes Mediated by an Air Stable Catalyst, (C 6F 5) 3B(OH 2). Front Chem 2020; 8:477. [PMID: 32656180 PMCID: PMC7325218 DOI: 10.3389/fchem.2020.00477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/08/2020] [Indexed: 12/29/2022] Open
Abstract
The utility of (C6F5)3B(OH2) as catalyst for the simple and environmentally benign synthesis of oligosiloxanes directly from hydrosilanes, is reported. This protocol offers several advantages compared to other methods of synthesizing siloxanes, such as mild reaction conditions, low catalyst loading, and a short reaction time with high yields and purity. The considerable H2O-tolerance of (C6F5)3B(OH2) promoted a catalytic route to disiloxanes which showed >99% conversion of three tertiary silanes, Et3SiH, PhMe2SiH, and Ph3SiH. Preliminary data on the synthesis of unsymmetrical disiloxanes (Si-O-Si') suggests that by modifying the reaction conditions and/or using a 1:1 combination of silane to silanol the cross-product can be favored. Intramolecular reactions of disilyl compounds with catalytic (C6F5)3B(OH2) led to the formation of novel bridged siloxanes, containing a Si-O-Si linkage within a cyclic structure, as the major product. Moreover, the reaction conditions enabled recovery and recycling of the catalyst. The catalyst was re-used 5 times and demonstrated excellent conversion for each substrate at 1.0 mol% catalyst loading. This seemingly simple reaction has a rather complicated mechanism. With the hydrosilane (R3SiH) as the sole starting material, the fate of the reaction largely depends on the creation of silanol (R3SiOH) from R3SiH as these two undergo dehydrocoupling to yield a disiloxane product. Generation of the silanol is based on a modified Piers-Rubinsztajn reaction. Once the silanol has been produced, the mechanism involves a series of competitive reactions with multiple catalytically relevant species involving water, silane, and silanol interacting with the Lewis acid and the favored reaction cycle depends on the concentration of various species in solution.
Collapse
Affiliation(s)
- Kristel M Rabanzo-Castillo
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Auckland, New Zealand
| | - Vipin B Kumar
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Auckland, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Auckland, New Zealand
| | - Erin M Leitao
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Auckland, New Zealand
| |
Collapse
|
11
|
Zhan XY, Zhang H, Dong Y, Yang J, He S, Shi ZC, Tang L, Wang JY. Chemoselective Hydrosilylation of the α,β-Site Double Bond in α,β- and α,β,γ,δ-Unsaturated Ketones Catalyzed by Macrosteric Borane Promoted by Hexafluoro-2-propanol. J Org Chem 2020; 85:6578-6592. [PMID: 32316729 DOI: 10.1021/acs.joc.0c00568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The B(C6F5)3-catalyzed chemoselective hydrosilylation of α,β- and α,β,γ,δ-unsaturated ketones into the corresponding non-symmetric ketones in mild reaction conditions is developed. Nearly 55 substrates including those bearing reducible functional groups such as alkynyl, alkenyl, cyano, and aromatic heterocycles are chemoselectively hydrosilylated in good to excellent yields. Isotope-labeling studies revealed that hexafluoro-2-propanol also served as a hydrogen source in the process.
Collapse
Affiliation(s)
- Xiao-Yu Zhan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hua Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu Dong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jian Yang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuai He
- Southwest Minzu University, Chengdu 610041, P. R. China
| | - Zhi-Chuan Shi
- Southwest Minzu University, Chengdu 610041, P. R. China
| | - Lei Tang
- Laboratory of Anaesthesia & Critical Care Medicine, Translational Neuroscience Center and Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ji-Yu Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, PR China
| |
Collapse
|
12
|
Zhang Q, Zhang XF, Li M, Li C, Liu JQ, Jiang YY, Ji X, Liu L, Wu YC. Mechanistic Insights into the Chemo- and Regio-Selective B(C6F5)3 Catalyzed C–H Functionalization of Phenols with Diazoesters. J Org Chem 2019; 84:14508-14519. [DOI: 10.1021/acs.joc.9b02035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qi Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xiao-Fei Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Mo Li
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Cheng Li
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Jia-Qin Liu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xin Ji
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yu-Cheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
13
|
Meng SS, Tang X, Luo X, Wu R, Zhao JL, Chan ASC. Borane-Catalyzed Chemoselectivity-Controllable N-Alkylation and ortho C-Alkylation of Unprotected Arylamines Using Benzylic Alcohols. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shan-Shui Meng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaowen Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun-Ling Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Albert S. C. Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
14
|
Trillo P, Adolfsson H. Direct Catalytic Reductive N-Alkylation of Amines with Carboxylic Acids: Chemoselective Enamine Formation and further Functionalizations. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Paz Trillo
- Department of Chemistry, Umeå University, KBC3, Linnaeus väg 10, SE-90187 Umeå, Sweden
| | - Hans Adolfsson
- Department of Chemistry, Umeå University, KBC3, Linnaeus väg 10, SE-90187 Umeå, Sweden
| |
Collapse
|
15
|
Catalytic Reductive N‐Alkylations Using CO
2
and Carboxylic Acid Derivatives: Recent Progress and Developments. Angew Chem Int Ed Engl 2019; 58:12820-12838. [DOI: 10.1002/anie.201810121] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 12/12/2022]
|
16
|
Cabrero‐Antonino JR, Adam R, Beller M. Katalytische reduktive N‐Alkylierungen unter Verwendung von CO
2
und Carbonsäurederivaten: Aktuelle Entwicklungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jose R. Cabrero‐Antonino
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a Rostock 18059 Deutschland
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC) Avda. de los Naranjos s/n València 46022 Spanien
| | - Rosa Adam
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a Rostock 18059 Deutschland
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC) Avda. de los Naranjos s/n València 46022 Spanien
| | - Matthias Beller
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a Rostock 18059 Deutschland
| |
Collapse
|
17
|
Chen H, Yan L, Wei H. Mechanism of Boron-Catalyzed N-Alkylation of Primary and Secondary Arylamines with Ketones Using Silanes under “Wet” Conditions. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hongcai Chen
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing 210097, China
| | - Lina Yan
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing 210097, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing 210097, China
| |
Collapse
|
18
|
Yang Y, Hou X, Zhang T, Ma J, Zhang W, Tang S, Sun H, Zhang J. Mechanistic Insights into the Nickel-Catalyzed Cross-Coupling Reaction of Benzaldehyde with Benzyl Alcohol via C–H Activation: A Theoretical Investigation. J Org Chem 2018; 83:11905-11916. [DOI: 10.1021/acs.joc.8b01807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Yang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| | - Xiaoying Hou
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| | - Tong Zhang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| | - Junmei Ma
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| | - Wanqiao Zhang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| | - Shuwei Tang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, People’s Republic of China
| | - Hao Sun
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
- National & Local United Engineering Lab for Power Battery, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| | - Jingping Zhang
- National & Local United Engineering Lab for Power Battery, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| |
Collapse
|
19
|
Du P, Zhao J. Density Functional Theory Mechanistic Study of Boron-Catalyzed N-Alkylation of Amines with Formic Acid: Formic Acid Activation by Silylation Reaction. Chem Asian J 2018; 13:701-709. [PMID: 29377619 DOI: 10.1002/asia.201701607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/04/2018] [Indexed: 11/11/2022]
Abstract
New methodology for the alkylation of amines is an intriguing issue in both academia and industry. Recently, several groups reported the metal-free B(C6 F5 )3 -catalyzed N-alkylation of amines, but the mechanistic details of these important reactions are unclear. Herein, a computational study was performed to elucidate the mechanism of the N-alkylation of amines with formic acid catalyzed by the Lewis acid B(C6 F5 )3 in the presence of hydrosilane. We found that the reaction started with the activation of formic acid through a novel model. Then, the high electrophilicity of the C center of the formic acid unit and the nucleophilic character of the amine resulted in a C-N coupling reaction. Finally, two sequential silyl-group and H- transfer steps occurred to generate the final product. Upon comparing the reaction barrier and the hydrogenation of indole, our mechanism is more favorable than that proposed by the group of Yu and Fu.
Collapse
Affiliation(s)
- Pan Du
- School of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, 210013, China
| | - Jiyang Zhao
- Office of Science and Technology, Nanjing Xiaozhuang University, Nanjing, 211171, China
| |
Collapse
|
20
|
Cheng GJ, Drosos N, Morandi B, Thiel W. Computational Study of B(C6F5)3-Catalyzed Selective Deoxygenation of 1,2-Diols: Cyclic and Noncyclic Pathways. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gui-Juan Cheng
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Nikolaos Drosos
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Bill Morandi
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
21
|
Late-stage chemoselective functional-group manipulation of bioactive natural products with super-electrophilic silylium ions. Nat Chem 2017; 10:85-90. [PMID: 29256501 DOI: 10.1038/nchem.2863] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/02/2017] [Indexed: 11/08/2022]
Abstract
The selective (and controllable) modification of complex molecules with disparate functional groups (for example, natural products) is a long-standing challenge that has been addressed using catalysts tuned to perform singular transformations (for example, C-H hydroxylation). A method whereby reactions with diverse functional groups within a single natural product are feasible depending on which catalyst or reagent is chosen would widen the possible structures one could obtain. Fluoroarylborane catalysts can heterolytically split Si-H bonds to yield an oxophilic silylium (R3Si+) equivalent along with a reducing (H-) equivalent. Together, these reactive intermediates enable the reduction of multiple functional groups. Exogenous phosphine Lewis bases further modify the catalyst speciation and attenuate aggressive silylium ions for the selective modification of complex natural products. Manipulation of the catalyst, silane reagent and the reaction conditions provides experimental control over which site is modified (and how). Applying this catalytic method to complex bioactive compounds (natural products or drugs) provides a powerful tool for studying structure-activity relationships.
Collapse
|
22
|
Pedrajas E, Sorribes I, Guillamón E, Junge K, Beller M, Llusar R. Efficient and Selective N-Methylation of Nitroarenes under Mild Reaction Conditions. Chemistry 2017; 23:13205-13212. [PMID: 28767165 DOI: 10.1002/chem.201702783] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 12/12/2022]
Abstract
Herein, we report a straightforward protocol for the preparation of N,N-dimethylated amines from readily available nitro starting materials using formic acid as a renewable C1 source and silanes as reducing agents. This tandem process is efficiently accomplished in the presence of a cubane-type Mo3 PtS4 catalyst. For the preparation of the novel [Mo3 Pt(PPh3 )S4 Cl3 (dmen)3 ]+ (3+ ) (dmen: N,N'-dimethylethylenediamine) compound we have followed a [3+1] building block strategy starting from the trinuclear [Mo3 S4 Cl3 (dmen)3 ]+ (1+ ) and Pt(PPh3 )4 (2) complexes. The heterobimetallic 3+ cation preserves the main structural features of its 1+ cluster precursor. Interestingly, this catalytic protocol operates at room temperature with high chemoselectivity when the 3+ catalyst co-exists with its trinuclear 1+ precursor. N-heterocyclic arenes, double bonds, ketones, cyanides and ester functional groups are well retained after N-methylation of the corresponding functionalized nitroarenes. In addition, benzylic-type as well as aliphatic nitro compounds can also be methylated following this protocol.
Collapse
Affiliation(s)
- Elena Pedrajas
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071, Castelló, Spain
| | - Iván Sorribes
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert Einstein Str. 29a, 18059, Rostock, Germany.,Present address: Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. De los Naranjos s/n, 46022, Valencia, Spain
| | - Eva Guillamón
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071, Castelló, Spain
| | - Kathrin Junge
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert Einstein Str. 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert Einstein Str. 29a, 18059, Rostock, Germany
| | - Rosa Llusar
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071, Castelló, Spain
| |
Collapse
|
23
|
Ogiwara Y, Shimoda W, Ide K, Nakajima T, Sakai N. Carboxamides as N
-Alkylating Reagents of Secondary Amines in Indium-Catalyzed Reductive Amination with a Hydrosilane. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yohei Ogiwara
- Department of Pure and Applied Chemistry; Faculty of Science and Technology; Tokyo University of Science (RIKADAI); 278-8510 Noda, Chiba Japan
| | - Wataru Shimoda
- Department of Pure and Applied Chemistry; Faculty of Science and Technology; Tokyo University of Science (RIKADAI); 278-8510 Noda, Chiba Japan
| | - Keisuke Ide
- Department of Pure and Applied Chemistry; Faculty of Science and Technology; Tokyo University of Science (RIKADAI); 278-8510 Noda, Chiba Japan
| | - Takumi Nakajima
- Department of Pure and Applied Chemistry; Faculty of Science and Technology; Tokyo University of Science (RIKADAI); 278-8510 Noda, Chiba Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry; Faculty of Science and Technology; Tokyo University of Science (RIKADAI); 278-8510 Noda, Chiba Japan
| |
Collapse
|
24
|
Qiao C, Liu XF, Liu X, He LN. Copper(II)-Catalyzed Selective Reductive Methylation of Amines with Formic Acid: An Option for Indirect Utilization of CO2. Org Lett 2017; 19:1490-1493. [DOI: 10.1021/acs.orglett.7b00551] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chang Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry and ‡Collaborative Innovation
Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiao-Fang Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry and ‡Collaborative Innovation
Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xi Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry and ‡Collaborative Innovation
Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry and ‡Collaborative Innovation
Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Fasano V, Ingleson MJ. Expanding Water/Base Tolerant Frustrated Lewis Pair Chemistry to Alkylamines Enables Broad Scope Reductive Aminations. Chemistry 2017; 23:2217-2224. [PMID: 27977048 PMCID: PMC5396349 DOI: 10.1002/chem.201605466] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Indexed: 01/05/2023]
Abstract
Lower Lewis acidity boranes demonstrate greater tolerance to combinations of water/strong Brønsted bases than B(C6 F5 )3 , this enables Si-H bond activation by a frustrated Lewis pair (FLP) mechanism to proceed in the presence of H2 O/alkylamines. Specifically, BPh3 has improved water tolerance in the presence of alkylamines as the Brønsted acidic adduct H2 O-BPh3 does not undergo irreversible deprotonation with aliphatic amines in contrast to H2 O-B(C6 F5 )3 . Therefore BPh3 is a catalyst for the reductive amination of aldehydes and ketones with alkylamines using silanes as reductants. A range of amines inaccessible using B(C6 F5 )3 as catalyst, were accessible by reductive amination catalysed by BPh3 via an operationally simple methodology requiring no purification of BPh3 or reagents/solvent. BPh3 has a complementary reductive amination scope to B(C6 F5 )3 with the former not an effective catalyst for the reductive amination of arylamines, while the latter is not an effective catalyst for the reductive amination of alkylamines. This disparity is due to the different pKa values of the water-borane adducts and the greater susceptibility of BPh3 species towards protodeboronation. An understanding of the deactivation processes occurring using B(C6 F5 )3 and BPh3 as reductive amination catalysts led to the identification of a third triarylborane, B(3,5-Cl2 C6 H3 )3 , that has a broader substrate scope being able to catalyse the reductive amination of both aryl and alkyl amines with carbonyls.
Collapse
Affiliation(s)
- Valerio Fasano
- School of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | | |
Collapse
|