1
|
Liu W, Liu Y, Zhang J, Zhu H, Fan S, Ha J, Lu Y, Wang Y, Liu W, Mi M, Feng F, Xu J. A new strategy for the fermentation of Massa Medicata Fermentata by combining multiple strains of fermentation and their fermentation mechanisms. Biotechnol Lett 2025; 47:52. [PMID: 40332618 DOI: 10.1007/s10529-025-03595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025]
Abstract
To address the quality instability of the traditional fermentation process of Massa Medicata Fermentata (LSQ), we designed an innovation strategy for dual-strain co-fermentation LSQ. Rhizopus arrhizus, Bacillus velezensis, Bacillus subtills, and Bacillus cereus were selected as the fermentation strains for the LSQ. After dual-strain co-fermentation, its pro-digestive enzymes and anti-inflammatory activities were significantly enhanced. Particularly, R. arrhizus/B. subtills fermentation group showed the prominent promotion of the enzymatic activities of amyloglucosidase, cellulase and trypsin, with AC200 values < 1.00 and Max fold increase values of 27.39 ± 0.22, 25.39 ± 0.87 and 48.07 ± 1.84, respectively, and anti-inflammatory activity with an IC50 value of 2.35 ± 0.18 mg/mL. Based on the correlation analysis of differential metabolic profiles and activities, the key pharmacodynamic metabolites were analyzed and validated, such as levomycetin succinatea, β-citrylglutamate, D-glucosaminic acid, nikkomycin and fucose 1-phosphate. Among them, D-glucosaminic acid was positively correlated with the promoting activity of amyloglucosidase, cellulose, enzyme trypsin, pepsin, and the inhibitory activity of NO production, and fucose 1-phosphate and nikkomycin had the prominently positive correlation with the promoting activity of pepsin (p < 0.01). In addition, the docking scores between them and digestive enzyme proteins were all < - 5. A new strategy involving the dual-strain fermentation of LSQ was investigated, and clarified the LSQ fermentation strain-constituent-pharmacological activity correlations, which provides a valuable reference for delving into the LSQ fermentation mechanism.
Collapse
Affiliation(s)
- Wanqiu Liu
- Tibetan Medicine Institute, Tibetan University of Tibetan Medicine, Lhasa, 850007, P. R. China
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Ying Liu
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jie Zhang
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Huangyao Zhu
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Siqi Fan
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jingwen Ha
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yuxuan Lu
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yizhu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Ma Mi
- Tibetan Medicine Institute, Tibetan University of Tibetan Medicine, Lhasa, 850007, P. R. China
| | - Feng Feng
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, P. R. China
- Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, P. R. China
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jian Xu
- Tibetan Medicine Institute, Tibetan University of Tibetan Medicine, Lhasa, 850007, P. R. China.
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| |
Collapse
|
2
|
Li Q, Zheng Y, Guo L, Xiao Y, Li H, Yang P, Xia L, Liu X, Chen Z, Li L, Zhang H. Microbial Degradation of Tetracycline Antibiotics: Mechanisms and Environmental Implications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38835142 DOI: 10.1021/acs.jafc.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The escalating global consumption of tetracyclines (TCs) as broad-spectrum antibiotics necessitates innovative approaches to mitigate their pervasive environmental persistence and associated risks. While initiatives such as China's antimicrobial reduction efforts highlight the urgency of responsible TC usage, the need for efficient degradation methods remains paramount. Microbial degradation emerges as a promising solution, offering novel insights into degradation pathways and mechanisms. Despite challenges, including the optimization of microbial activity conditions and the risk of antibiotic resistance development, microbial degradation showcases significant innovation in its cost-effectiveness, environmental friendliness, and simplicity of implementation compared to traditional degradation methods. While the published reviews have summarized some aspects of biodegradation of TCs, a systematic and comprehensive summary of all the TC biodegradation pathways, reactions, intermediates, and final products including ring-opening products involved with enzymes and mechanisms of each bacterium and fungus reported is necessary. This review aims to fill the current gap in the literature by offering a thorough and systematic overview of the structure, bioactivity mechanism, detection methods, microbial degradation pathways, and molecular mechanisms of all tetracycline antibiotics in various microorganisms. It comprehensively collects and analyzes data on the microbial degradation pathways, including bacteria and fungi, intermediate and final products, ring-opening products, product toxicity, and the degradation mechanisms for all tetracyclines. Additionally, it points out future directions for the discovery of degradation-related genes/enzymes and microbial resources that can effectively degrade tetracyclines. This review is expected to contribute to advancing knowledge in this field and promoting the development of sustainable remediation strategies for contaminated environments.
Collapse
Affiliation(s)
- Qin Li
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Yanhong Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Lijun Guo
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Ying Xiao
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Haiyue Li
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Pingping Yang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Li Xia
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Xiangqing Liu
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Zhangyan Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Li Li
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Huaidong Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| |
Collapse
|
3
|
Lazic J, Filipovic V, Pantelic L, Milovanovic J, Vojnovic S, Nikodinovic-Runic J. Late-stage diversification of bacterial natural products through biocatalysis. Front Bioeng Biotechnol 2024; 12:1351583. [PMID: 38807651 PMCID: PMC11130421 DOI: 10.3389/fbioe.2024.1351583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial natural products (BNPs) are very important sources of leads for drug development and chemical novelty. The possibility to perform late-stage diversification of BNPs using biocatalysis is an attractive alternative route other than total chemical synthesis or metal complexation reactions. Although biocatalysis is gaining popularity as a green chemistry methodology, a vast majority of orphan sequenced genomic data related to metabolic pathways for BNP biosynthesis and its tailoring enzymes are underexplored. In this review, we report a systematic overview of biotransformations of 21 molecules, which include derivatization by halogenation, esterification, reduction, oxidation, alkylation and nitration reactions, as well as degradation products as their sub-derivatives. These BNPs were grouped based on their biological activities into antibacterial (5), antifungal (5), anticancer (5), immunosuppressive (2) and quorum sensing modulating (4) compounds. This study summarized 73 derivatives and 16 degradation sub-derivatives originating from 12 BNPs. The highest number of biocatalytic reactions was observed for drugs that are already in clinical use: 28 reactions for the antibacterial drug vancomycin, followed by 18 reactions reported for the immunosuppressive drug rapamycin. The most common biocatalysts include oxidoreductases, transferases, lipases, isomerases and haloperoxidases. This review highlights biocatalytic routes for the late-stage diversification reactions of BNPs, which potentially help to recognize the structural optimizations of bioactive scaffolds for the generation of new biomolecules, eventually leading to drug development.
Collapse
Affiliation(s)
- Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
4
|
de Fátima NG, Barriga A, Cáceres JC, Pinto E, Cabrera R. Oxidation of chlortetracycline and its isomers by Botrytis aclada laccase in the absence of mediators: pH dependence and identification of transformation products by LC-MS. Biodegradation 2024; 35:155-171. [PMID: 37428416 DOI: 10.1007/s10532-023-10046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Tetracyclines are antibiotics considered emerging pollutants and currently, wastewater treatment plants are not able to remove them efficiently. Laccases are promising enzymes for bioremediation because they can oxidize a wide variety of substrates. The aim of this study was to evaluate the Botrytis aclada laccase for the oxidation of chlortetracycline and its isomers in the absence of a mediator molecule, at a pH range between 3.0 to 7.0, and to characterize the transformation products by LC-MS. Chlortetracycline and three isomers were detected in both, controls and reaction mixtures at 0 h and in controls after 48 h of incubation but in different proportions depending on pH. An additional isomer was also detected, but only in the presence of BaLac. Based on the transformation products identified in the enzymatic reactions and information from literature, we assembled a network of transformation pathways starting from chlortetracycline and its isomers. The spectrometric analysis of the products indicated the probable occurrence of oxygen insertion, dehydrogenation, demethylation and deamination reactions. Four new products were identified, and we also described a novel transformation product without the chloro group. We observed that increasing pH led to higher diversity of main products. This is the first study using the laccase from fungi Botrytis aclada to oxidate chlortetracycline and its isomers and it can be considered as an ecological alternative to be used in bioremediation processes such as wastewater.
Collapse
Affiliation(s)
- Nadia Gavilán de Fátima
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Unidad de Espectrometría de Masas-CEPEDEQ, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Andrés Barriga
- Unidad de Espectrometría de Masas-CEPEDEQ, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Juan Carlos Cáceres
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Ernani Pinto
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Pádua Dias 11, Piracicaba, SP, Brasil
| | - Ricardo Cabrera
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
| |
Collapse
|
5
|
Kubota-Sakashita M, Kawakami H, Kikuzato K, Shirai F, Nakamura T, Kato T. An ex vivo screening using mouse brain mitochondria identified seco-cycline D as an inhibitor of mitochondrial permeability transition pore. Biochem Biophys Res Commun 2024; 691:149253. [PMID: 38043196 DOI: 10.1016/j.bbrc.2023.149253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Mitochondrial dysfunction is implicated in neuropsychiatric disorders. Inhibition of mitochondrial permeability transition pore (mPTP) and thereby enhancement of mitochondrial Ca2+ retention capacity (CRC) is a promising treatment strategy. Here, we screened 1718 compounds to search for drug candidates inhibiting mPTP by measuring their effects on CRC in mitochondria isolated from mouse brains. We identified seco-cycline D (SCD) as an active compound. SCD and its derivative were more potent than a known mPTP inhibitor, cyclosporine A (CsA). The mechanism of action of SCD was suggested likely to be different from CsA that acts on cyclophilin D. Repeated administration of SCD decreased ischemic area in a middle cerebral artery occlusion model in mice. These results suggest that SCD is a useful probe to explore mPTP function.
Collapse
Affiliation(s)
- Mie Kubota-Sakashita
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan; Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan.
| | - Hirochika Kawakami
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan; Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Ko Kikuzato
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Fumiyuki Shirai
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Takemichi Nakamura
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan.
| |
Collapse
|
6
|
Ivanic FM, Butler M, Borón CI, Candal RJ. Assessing the transformation products and fate of Oxytetracycline by simulated aerobic degradation tests. CHEMOSPHERE 2023; 343:140284. [PMID: 37758075 DOI: 10.1016/j.chemosphere.2023.140284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Oxytetracycline (OTC) is a widely used broad-spectrum antibiotic, whose presence in water and sediments was reported in various regions of the world. The effects of OTC and other tetracyclines on the environment have been intensively studied although many of their transformation products (TPs) formed in the environment and their impact have not been yet fully characterized. Abiotic and biotic degradation tests under aerobic conditions at two pH values were carried out using OTC in artificial water/sediment systems to assess the effect of these variables on the environmental fate of the pollutant. HPLC-MSn was employed to detect and identify the main degradation products and pathways. Several transformations involved in the process were identified including alcohol oxidation, decarbonylation and hydroxylation. Differences in TPs and kinetics were found among degradation conditions, remarking a faster degradation of both OTC and TPs in the presence of microorganisms and at lower pH values. In summary, a total of 44 TPs were detected and structures were proposed for 20 of them, none of them having been previously reported. Furthermore, OTC degradation generated 24 TPs which remained in either solution or sediment, although none of them displayed higher algae toxicity than OTC. These results might be useful for planning future remediation and monitoring strategies.
Collapse
Affiliation(s)
- Federico M Ivanic
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| | - Matías Butler
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina.
| | - Carlos I Borón
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| | - Roberto J Candal
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| |
Collapse
|
7
|
Shorokhov VV, Zhokhov SS, Rybakov VB, Boichenko MA, Andreev IA, Ratmanova NK, Trushkov IV, Ivanova OA. Donor-Acceptor Cyclopropane Ring Expansion to 1,2-Dihydronaphthalenes. Access to Bridged Seven-Membered Lactones. Org Lett 2023; 25:7963-7967. [PMID: 37916763 DOI: 10.1021/acs.orglett.3c02846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A Lewis-acid-promoted domino ring-opening cyclization of readily available donor-acceptor cyclopropanes with a preinstalled electrophilic center, embedded in a donor group, to functionalized 1,2-dihydronaphthalenes is reported herein. The obtained compounds are transformed to pharmacologically attractive bridged tricyclic esters in a diastereospecific manner.
Collapse
Affiliation(s)
- Vitaly V Shorokhov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Sergey S Zhokhov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Victor B Rybakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Maksim A Boichenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Ivan A Andreev
- Laboratory of Chemical Synthesis, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia
| | - Nina K Ratmanova
- Laboratory of Chemical Synthesis, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia
| | - Olga A Ivanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| |
Collapse
|
8
|
Billié S, Reversé K, Arlabosse JM, Bertin D, Boulier A, Cachot T, Chambon S, Charras K, Cren C, Furnes B, Gerfaud T, Joly-Battaglini M, Longoni D, Mouis G, Pierre R, Raynard H, Texier T, Trognon C, Zanelli U, Boiteau JG, Harris CS. Identification of unknown impurities J, RRT 2.2, 2.4, 2.6 and 3.4 in tetralysal® capsules. Eur J Pharm Sci 2023; 188:106519. [PMID: 37478583 DOI: 10.1016/j.ejps.2023.106519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
Tetralysal® is a Galderma oral drug product (DP) marketed for the treatment of acne. Tetralysal® is sold in capsules containing either 150 mg or 300 mg of the drug substance. In the British Pharmacopoeia monograph for Lymecycline Capsules, the impurities already specified in the drug substance (A-G), visible in the European Pharmacopoeia 〈1654〉, are also specified together with an unidentified impurity at RRT 1.6 (Impurity J). Based on both monographs Galderma has focused on characterizing most of specified and unspecified impurities to better understand the stability and degradation processes of the formulation. In this manuscript, through both formal synthesis, preparative LCMS and formal degradation studies, we are the first group to confirm the structural identities of 5 unidentified impurities (Impurity J (RRT 1.6), RRT 2.2, 2.4, 2.6 and 3.4), conditions which exacerbate the formation of all 5 impurities and response factors for RRT 2.2, 2.6 and 3.4.
Collapse
Affiliation(s)
| | - Kevin Reversé
- Nuvisan France SARL - CS 10287, Sophia-Antipolis 06905, France
| | | | - Didier Bertin
- Galderma SA, Av. d'Ouchy 4, Lausanne 1006, Switzerland
| | - Antoine Boulier
- Laboratoires Galderma SAS, ZI Montdésir, Alby-sur-Chéran 74540, France
| | - Tony Cachot
- Nuvisan France SARL - CS 10287, Sophia-Antipolis 06905, France
| | | | - Karine Charras
- Laboratoires Galderma SAS, ZI Montdésir, Alby-sur-Chéran 74540, France.
| | - Cécile Cren
- Galderma SA, Av. d'Ouchy 4, Lausanne 1006, Switzerland
| | - Bjarte Furnes
- Galderma SA, Av. d'Ouchy 4, Lausanne 1006, Switzerland
| | - Thibaud Gerfaud
- Nuvisan France SARL - CS 10287, Sophia-Antipolis 06905, France
| | | | - Davide Longoni
- Olon SpA, Strada Rivoltana, km 6/7, Rodano, Milan 20053, Italy
| | - Gregoire Mouis
- Nuvisan France SARL - CS 10287, Sophia-Antipolis 06905, France
| | - Romain Pierre
- Nuvisan France SARL - CS 10287, Sophia-Antipolis 06905, France
| | | | - Thomas Texier
- Nuvisan France SARL - CS 10287, Sophia-Antipolis 06905, France
| | | | - Ugo Zanelli
- Galderma SA, Av. d'Ouchy 4, Lausanne 1006, Switzerland
| | | | | |
Collapse
|
9
|
Wang X, Meng F, Zhang B, Xia Y. Elimination of tetracyclines in seawater by laccase-mediator system. CHEMOSPHERE 2023; 333:138916. [PMID: 37172624 DOI: 10.1016/j.chemosphere.2023.138916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Long-term exposure of antibiotics at low level leads to the accumulation of antibiotics in environmental media and organisms, inducing the formation of antibiotic resistance genes. Seawater is an important sink for many contaminants. Here, laccase from Aspergillus sp. And mediators that follow different oxidation mechanisms were combined to degrade tetracyclines (TCs) at environmentally relevant levels (ng·L-1-μg·L-1) in coastal seawater. The high salinity and alkaline of seawater changed the enzymatic structure of laccase, resulting in a reduced affinity of laccase to the substrate in seawater (Km of 0.0556 mmol L-1) than that in buffer (Km of 0.0181 mmol L-1). Although the stability and activity of the laccase decreased in seawater, laccase at a concentration of 200 U·L-1 with a laccase/syringaldehyde (SA) ratio of 1 U: 1 μmol could completely degrade TCs in seawater at initial concentrations of less than 2 μg L-1 in 2 h. Molecular docking simulation showed that the interaction between TCs and laccase mainly includes hydrogen bond interaction and hydrophobic interaction. TCs were degraded into small molecular products through a series of reactions: demethylation, deamination, deamidation, dehydration, hydroxylation, oxidation, and ring-opening. Prediction of the toxicity of intermediates showed that the majority of TCs can be degraded into low-toxic or non-toxic, small-molecule products within 1 h, indicating that the degradation process of TCs by a laccase-SA system has good ecological safety. The successful removal of TCs by the laccase-SA system demonstrates its potential for the elimination of pollutants in marine environment.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Bo Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yufan Xia
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
10
|
Virués-Segovia JR, Muñoz-Mira S, Durán-Patrón R, Aleu J. Marine-derived fungi as biocatalysts. Front Microbiol 2023; 14:1125639. [PMID: 36922968 PMCID: PMC10008910 DOI: 10.3389/fmicb.2023.1125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Marine microorganisms account for over 90% of ocean biomass and their diversity is believed to be the result of their ability to adapt to extreme conditions of the marine environment. Biotransformations are used to produce a wide range of high-added value materials, and marine-derived fungi have proven to be a source of new enzymes, even for activities not previously discovered. This review focuses on biotransformations by fungi from marine environments, including bioremediation, from the standpoint of the chemical structure of the substrate, and covers up to September 2022.
Collapse
Affiliation(s)
- Jorge R Virués-Segovia
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Salvador Muñoz-Mira
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
11
|
Delius J, Emmerich M, Özyurt V, Hamscher G. Biotransformation of Tetracyclines by Fungi: Challenges and Future Research Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1454-1460. [PMID: 35094515 DOI: 10.1021/acs.jafc.1c05121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tetracycline antibiotics are used worldwide in human and veterinary medicine. On the basis of low metabolization and through organic fertilizers, tetracyclines enter the environment in a biologically active form. This can have toxic effects on microbial communities and promote the selection of resistant strains. The use of fungi could be a promising approach to deactivate tetracyclines by degradation or derivatization as a result of their particular enzyme endowment. Here, we highlight the current analytical and biotechnological challenges associated with the bioconversion of tetracyclines by fungi and propose research approaches to advance the technology for wastewater and manure treatment.
Collapse
Affiliation(s)
- Judith Delius
- Institute for Food Chemistry and Food Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Miriam Emmerich
- Institute for Food Chemistry and Food Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Vasfiye Özyurt
- Institute for Food Chemistry and Food Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
- Department of Food Engineering, Near East University, 99138 Nicosia, Turkey
| | - Gerd Hamscher
- Institute for Food Chemistry and Food Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| |
Collapse
|
12
|
Lu YX, Song HL, Chand H, Wu Y, Yang YL, Yang XL. New insights into the role of molecular structures on the fate and behavior of antibiotics in an osmotic membrane bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127040. [PMID: 34474366 DOI: 10.1016/j.jhazmat.2021.127040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Osmotic membrane bioreactors (OMBRs) have been applied to enhance removal of antibiotics, however, information on the effects of molecular structures on the behavior of antibiotics is still lacking. Herein, adsorption kinetics, transformation pathways, and membrane rejection mechanisms of OMBRs were investigated by adding two typical antibiotics (i.e., sulfadiazine, SDZ, and tetracycline hydrochloride, TC-HCl). 80.70-91.12% of TC-HCl was removed by adsorption and biodegradation, while 17.50-75.14% of SDZ was removed by membrane rejection; this depended on its concentration due to reduced electrostatic interactions and hydrophobic adsorption. The adsorption capacity of TC-HCl (i.e., 1.34±0.01 mg/g) was significantly higher than that of SDZ (i.e., 0.18±0.03 mg/g) due to enhanced π-π interactions, hydrogen bonding and improved electrostatic interactions. The abundant production of polysaccharide-like substances from TC-HCl biodegradation contributed to microbial metabolism and thus enhanced microbial function during TC-HCl biotransformation. The primary degradation pathways were determined by microbial function analysis, and the primary intermediates from TC-HCl degradation were less toxic than those from SDZ degradation due to the different reactions of amino groups. These results and the corresponding mechanism provide a theoretical foundation for the further development of OMBR technology for highly efficient treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Yu-Xiang Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Hai-Liang Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Hameer Chand
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - You Wu
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, PR China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, PR China.
| | - Xiao-Li Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
13
|
Salim AA, Khalil ZG, Elbanna AH, Wu T, Capon RJ. Methods in Microbial Biodiscovery. Mar Drugs 2021; 19:503. [PMID: 34564165 PMCID: PMC8464790 DOI: 10.3390/md19090503] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/07/2023] Open
Abstract
This review presents an account of the microbial biodiscovery methodology developed and applied in our laboratory at The University of Queensland, Institute for Molecular Bioscience, with examples drawn from our experiences studying natural products produced by Australian marine-derived (and terrestrial) fungi and bacteria.
Collapse
Affiliation(s)
| | | | | | | | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.A.S.); (Z.G.K.); (A.H.E.); (T.W.)
| |
Collapse
|
14
|
Ruan Y, Cai L, Lu H, Zhang M, Xu X, Li W. Performance of Aerobic Denitrification by the Strain Pseudomonas balearica RAD-17 in the Presence of Antibiotics. Microorganisms 2021; 9:microorganisms9081584. [PMID: 34442663 PMCID: PMC8398835 DOI: 10.3390/microorganisms9081584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
Aerobic denitrification, one of the important nitrate metabolic pathways in biological denitrification, has been attracting increasing interest recently due to its functional advantages. In order to evaluate the effect of antibiotics on aerobic denitrification and guide practical engineering application of aerobic denitrification techniques, we evaluated the performance of aerobic denitrification by the strain Pseudomonas balearica RAD-17 in the presence of ciprofloxacin (CFX) and oxytetracycline (OTC). No significant negative impact on the performance of aerobic denitrification in the presence of CFX or OTC within the range of 50 to 300 μg L-1 was found. Significant degradation of OTC was found within the range of 50 μg L-1 to 300 μg L-1 under aerobic denitrification conditions, while no degradation was found for CFX. Stimulation of cell growth occurred within the investigated range of antibiotics. Under anoxic or aerobic conditions, the addition of CFX or OTC changed the N2O production trend. The results in the present study may play an important role in informing the use of aerobic denitrification techniques in the presence of antibiotics within environmentally relevant concentrations (<1 mg/L).
Collapse
Affiliation(s)
- Yunjie Ruan
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
- Academy of Rural Development, Zhejiang University, Hangzhou 310058, China
| | - Lei Cai
- Laboratory of Microbial Resources, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China;
| | - Huifeng Lu
- Zhejiang Water Healer Environmental Technology Co., Ltd., Hangzhou 311121, China;
| | - Meng Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.X.)
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiangyang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.X.)
| | - Wenbing Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence:
| |
Collapse
|
15
|
|
16
|
Acharyya RK, Kim S, Park Y, Han JT, Yun J. Asymmetric Synthesis of 1,2-Dihydronaphthalene-1-ols via Copper-Catalyzed Intramolecular Reductive Cyclization. Org Lett 2020; 22:7897-7902. [PMID: 32991187 DOI: 10.1021/acs.orglett.0c02829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe a copper-catalyzed intramolecular reductive cyclization of easily accessible benz-tethered 1,3-dienes containing a ketone moiety. This process provided biologically active 1,2-dihydronaphthalene-1-ol derivatives in good yields with excellent enantio- and diastereoselectivity. Mechanistic investigations using density functional theory revealed that (Z)- and (E)-allylcopper intermediates formed in situ from the diene and copper catalyst undergo isomerization and selective intramolecular allylation of the (E)-allylcopper form of the major product through a six-membered boatlike transition state. The resulting products were further transformed to fully saturated naphthalene-1-ols by reactions of the olefin moiety.
Collapse
Affiliation(s)
| | - Soyoung Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Yeji Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jung Tae Han
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jaesook Yun
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
17
|
Bajkacz S, Felis E, Kycia-Słocka E, Harnisz M, Korzeniewska E. Development of a new SLE-SPE-HPLC-MS/MS method for the determination of selected antibiotics and their transformation products in anthropogenically altered solid environmental matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138071. [PMID: 32335399 DOI: 10.1016/j.scitotenv.2020.138071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
The presence of antibiotic residues, their bioactive metabolites and other transformation products in the environment may adversely affect the organisms that live in the environment and may also contribute to increasing the antibiotic resistance of bacteria. It is particularly difficult to determine the types of contaminants in solid samples, in particular, those that are anthropogenically changed, e.g., as a result of controlled biochemical processes. Therefore, the aim of this research was to develop of a new method for the determination of twelve antibiotics belonging to different groups, such as penicillins, sulfonamides, tetracyclines, quinolones, imidazoles and cefalosporins, in digested manure and activated sludge samples, which were used as examples of anthropogenically altered environmental solid samples. The analyses were performed using high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The solid-liquid extraction (SLE) method to isolate analytes from digested manure and activated sludge was developed and optimized, the same as clean-up procedure followed by solid phase extraction (SPE). The recovery ranged from 45 to 85%. Finally, the validated method was applied to the determination of the selected antibiotics in manure and activated sludge samples after an anaerobic digestion process.. An additional aim of the study was to verify whether the developed method allows simultaneous detection of transformation products of the studied antibiotics in solid samples. The study showed that by optimizing the analysis conditions, it is possible to simultaneously determine the selected antibiotics and their transformation products (including their epimeric forms), which can significantly improve the ability to control the efficiency of the biological processes used in this area. In practice, this means that the developed methodology may be particularly useful in the context of research and other works related to the anaerobic digestion of activated sludge, manure or other solid substrates of environmental origin.
Collapse
Affiliation(s)
- Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland; Silesian University of Technology, Centre for Biotechnology, ul. B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Ewa Felis
- Silesian University of Technology, Centre for Biotechnology, ul. B. Krzywoustego 8, 44-100 Gliwice, Poland; Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Elżbieta Kycia-Słocka
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Monika Harnisz
- University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environmental Microbiology, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Ewa Korzeniewska
- University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environmental Microbiology, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| |
Collapse
|
18
|
Capon RJ. Extracting value: mechanistic insights into the formation of natural product artifacts – case studies in marine natural products. Nat Prod Rep 2020; 37:55-79. [DOI: 10.1039/c9np00013e] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review highlights the importance of valuing natural product handling artifacts, to open a new window into, and provide a unique perspective of, bioactive chemical space.
Collapse
Affiliation(s)
- Robert J. Capon
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- St Lucia
- Australia
| |
Collapse
|
19
|
Biodegradation of antibiotics: The new resistance determinants – part I. N Biotechnol 2020; 54:34-51. [DOI: 10.1016/j.nbt.2019.08.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/07/2022]
|
20
|
Jiao WH, Salim AA, Khalil ZG, Dewapriya P, Lin HW, Butler MS, Capon RJ. Trivirensols: Selectively Bacteriostatic Sesquiterpene Trimers from the Australian Termite Nest-Derived Fungus Trichoderma virens CMB-TN16. JOURNAL OF NATURAL PRODUCTS 2019; 82:3165-3175. [PMID: 31625738 DOI: 10.1021/acs.jnatprod.9b00760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The termite nest-derived fungus Trichoderma virens CMB-TN16 cultivated on rice-based media produced seven new first-in-class trimeric sesquiterpenes, trivirensols A-G (11-17). Structures inclusive of absolute configurations were assigned by detailed spectroscopic analysis and biosynthetic considerations. Although trivirensols exhibit no cytotoxicity to mammalian carcinoma cells, selected examples are bacteriostatic against vancomycin-resistant Enterococcus faecalis (VRE). Structure-activity relationship (SAR) investigations combined with in situ chemical stability studies documented bacteriostatic activity for trivirensols A (11) and B (12) and the co-metabolite divirensols A (4), B (5), and G (10), all of which share a common terminal butenolide. Significantly, SAR studies also revealed bacteriostatic activity for trivirensols C (13) and G (17) and the co-metabolite divirensol C (6), all of which share a common hydrated butenolide terminal. Of note, when exposed to VRE cell cultures, the hydrated butenolides 6, 13, and 17 undergo rapid in situ dehydration to corresponding butenolides, suggesting hydrated butenolides are a pro-drug form of the butenolide VRE bacteriostatic pharmacophore.
Collapse
Affiliation(s)
- Wei-Hua Jiao
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Angela A Salim
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Zeinab G Khalil
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Pradeep Dewapriya
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Mark S Butler
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Robert J Capon
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| |
Collapse
|
21
|
Petsas AS, Vagi MC. Trends in the Bioremediation of Pharmaceuticals and Other Organic Contaminants Using Native or Genetically Modified Microbial Strains: A Review. Curr Pharm Biotechnol 2019; 20:787-824. [DOI: 10.2174/1389201020666190527113903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 01/28/2023]
Abstract
Nowadays, numerous synthetic and semisynthetic chemicals are extensively produced and consequently used worldwide for many different purposes, such as pharmaceuticals, pesticides, hydrocarbons with aromatic rings (known as polycyclic aromatic hydrocarbons, PAHs), multi-substituted biphenyls with halogens (such as polychlorinated biphenyls, PCBs), and many other toxic and persistent chemical species. The presence of the aforementioned xenobiotic substances not only in various environmental matrices (water, air, and soil), but also in biological tissues (organisms) as well as in several compartments of raw or processed food (of fruit, vegetal, and animal origin), has raised global scientific concerns regarding their potential toxicity towards non target organisms including humans. Additionally, the ability of those persistent organic pollutants to be magnified via food consumption (food chain) has become a crucial threat to human health. Microbial degradation is considered an important route influencing the fate of those toxicants in each matrix. The technique of bioremediation, either with microorganisms (native or genetically modified) which are applied directly (in a reactor or in situ), or with cell extracts or purified enzymes preparations, is reported as a low cost and potential detoxification technology for the removal of toxic chemicals. The sources and toxic impacts of target groups of chemicals are briefly presented in the present study, whereas the bioremediation applications for the removal of pharmaceuticals and other organic contaminants using microbial strains are critically reviewed. All the recently published data concerning the genes encoding the relevant enzymes that catalyze the degradation reactions, the mechanisms of reactions and parameters that influence the bioremediation process are discussed. Finally, research needs and future trends in the direction of decontamination are high-lightened.
Collapse
Affiliation(s)
- Andreas S. Petsas
- Laboratory of Environmental Quality and Geospatial Applications, Department of Marine Sciences, School of Environment, University of the Aegean, Lesvos, Greece
| | - Maria C. Vagi
- Laboratory of Environmental Quality and Geospatial Applications, Department of Marine Sciences, School of Environment, University of the Aegean, Lesvos, Greece
| |
Collapse
|
22
|
Keßler DN, Fokuhl VK, Petri MS, Spielmeyer A. Abiotic transformation products of tetracycline and chlortetracycline in salt solutions and manure. CHEMOSPHERE 2019; 224:487-493. [PMID: 30831500 DOI: 10.1016/j.chemosphere.2019.02.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Tetracyclines belong to the group of the most applied antibiotics in veterinary medicine worldwide. Due to their incomplete absorption and/or metabolism in the animal gut, tetracyclines are frequently detected in manure samples. Within the matrix, an elimination of these compounds has been reported in several studies. However, only little information about potential transformation products of tetracyclines in manure and the environment is available. Therefore, the fate of tetracycline (TC) and chlortetracycline (CTC) was investigated in aqueous solutions and manure. Abiotic incubation of TC in phosphate buffer led to a remarkable red-brown coloring of the solution. Subsequent compound isolation and structure elucidation by MS/MS and NMR techniques revealed the formation of seco-cycline A, a compound formerly described as a fungal biotransformation product of TC. For CTC, two comparable products were identified which were derived from its isomeric form isoCTC. All transformation products showed no antimicrobial activity for concentrations up to 500 mg L-1. When TC and CTC were incubated in cow manure for 7 d, the above mentioned three transformation products were also formed in this complex matrix (up to 5.1 mg kg-1). Manure, soil and leachate samples from Lower Saxony revealed the presence of seco-cycline A in manure and soil, but not in water. To obtain a better insight in the fate of tetracyclines in environmental matrices, future analytical and ecotoxicological studies dealing with this subject should include the analysis especially of seco-cycline A.
Collapse
Affiliation(s)
- Dominique N Keßler
- Justus Liebig University, Institute for Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany
| | - Vanessa K Fokuhl
- Justus Liebig University, Institute for Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany
| | - Madeleine S Petri
- Justus Liebig University, Institute for Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany
| | - Astrid Spielmeyer
- Justus Liebig University, Institute for Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany.
| |
Collapse
|
23
|
Xie Z, Tang J, Wu X, Li X, Hua R. Bioconcentration, metabolism and the effects of tetracycline on multiple biomarkers in Chironomus riparius larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1590-1598. [PMID: 30308927 DOI: 10.1016/j.scitotenv.2018.08.371] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
The antibiotic tetracycline (TC) is widespread in surface waters, but few data are available regarding its adverse effects on aquatic insects. In this study, we investigated the bioconcentration, metabolism, and effects of TC on Chironomus riparius larvae exposed to different concentrations of TC (1.83, 18.5 and 174 μg L-1) for 48 h. The bioconcentration factors were 3.65, 0.74 and 0.23 in larvae with exposure to 1.83, 18.5 and 174 μg L-1 TC, respectively. High concentration ratios of the metabolites anhydrotetracycline (0.56-0.60), 4-epitetracycline (0.43-0.69), and 4-epianhydrotetracycline (0.50-0.55) to the unmetabolized compound were found. Additionally, the activities of superoxide dismutase and glutathione S-transferase were markedly inhibited with a significant increase in malondialdehyde contents at high exposure concentrations of TC (18.5 and 174 μg L-1). Moreover, significant up-regulation of heat shock genes (hsp70 and hsp27), the ecdysone receptor gene, and the E74 early ecdysone responsive gene was observed at all exposure concentrations except for hsp70 at 1.83 μg L-1. Collectively, these results suggested that TC was quickly absorbed and metabolized by C. riparius and resulted in molecular and biochemical disturbances.
Collapse
Affiliation(s)
- Zhengxin Xie
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jun Tang
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xuede Li
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Rimao Hua
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
24
|
Jiao WH, Dewapriya P, Mohamed O, Khalil ZG, Salim AA, Lin HW, Capon RJ. Divirensols: Sesquiterpene Dimers from the Australian Termite Nest-Derived Fungus Trichoderma virens CMB-TN16. JOURNAL OF NATURAL PRODUCTS 2019; 82:87-95. [PMID: 30596497 DOI: 10.1021/acs.jnatprod.8b00746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A chemical investigation of the Australian termite nest-derived fungus Trichoderma virens CMB-TN16 yielded the known sesquiterpene gliocladic acid (1), together with two new acetylated analogues, 3-acetylgliocladic acid (2) and 14-acetylgliocladic acid (3), and seven new dimeric congeners, divirensols A-G (4-10). All metabolites were identified by detailed spectroscopic analysis, supported by biosynthetic considerations, and were assessed for antibacterial and cytotoxic properties. The divirensols are examples of an exceptionally rare class of dimeric sesquiterpene, likely linked via a highly convergent biosynthetic pathway. HPLC-DAD-MS analysis of the crude fungal extract detected ions attributed to putative monomeric biosynthetic precursors.
Collapse
Affiliation(s)
- Wei-Hua Jiao
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Pradeep Dewapriya
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Osama Mohamed
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Zeinab G Khalil
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Angela A Salim
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Robert J Capon
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , St Lucia , QLD 4072 , Australia
| |
Collapse
|
25
|
Sawadsitang S, Suwannasai N, Mongkolthanaruk W, Ahmadi P, McCloskey S. A new amino amidine derivative from the wood-decaying fungus Xylaria cf. cubensis SWUF08-86. Nat Prod Res 2017; 32:2260-2267. [PMID: 29171293 DOI: 10.1080/14786419.2017.1405414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The secondary metabolites of Xylaria cf. cubensis SWUF08-86 fungus were investigated, and the chromatographic separation of the crude extracts yielded seventeen compounds. The structure elucidation by spectroscopic analysis including 1D and 2D NMR and the comparison of these data with literature, along with HREIMS spectrometry, revealed one new amino amidine derivative (1), together with five known simple cyclic dipeptide analogs, diketopiperazines (2-6) and eleven other known compounds, including one hemi-cycline (10), three aromatic derivatives (11-13), one sesquiterpene (14) and three sterols (15-17). The isolated compounds were screened for anticancer and anti-pathogenic bacterial and fungal activities. Based on this work, Xylaria cf. cubensis SWUF08-86 has proven to be a diverse secondary metabolites producer.
Collapse
Affiliation(s)
- Sasiphimol Sawadsitang
- a Natural Products Research Unit, Faculty of Science, Department of Chemistry , Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Khon Kaen University , Khon Kaen , Thailand
| | - Nuttika Suwannasai
- b Faculty of Science, Department of Biology , Srinakharinwirot University , Bangkok , Thailand
| | - Wiyada Mongkolthanaruk
- c Faculty of Science, Department of Microbiology , Khon Kaen University , Khon Kaen , Thailand
| | - Peni Ahmadi
- d Faculty of Science, Department of Chemistry, Biology and Marine Science , University of the Ryukyus , Okinawa , Japan
| | - Sirirath McCloskey
- a Natural Products Research Unit, Faculty of Science, Department of Chemistry , Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Khon Kaen University , Khon Kaen , Thailand
| |
Collapse
|
26
|
Tian JL, Chen Y, Wang YX, Huang XX, Sun X, Liu KC, Song SJ. Microbial transformation of methyl cyperenoate by Cunninghamella elegans AS 3.2028 and the antithrombotic activities of its metabolites. RSC Adv 2016. [DOI: 10.1039/c6ra24332k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Microbial transformation is a remarkable tool for the structural modification of bioactive natural compounds converting them into more valuable biologically active derivatives.
Collapse
Affiliation(s)
- Jin-Long Tian
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- Key Laboratory of Structure-Based Drug Design & Discovery
| | - Yu Chen
- School of Life Science and Biopharmaceutics
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Yu-Xi Wang
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- Key Laboratory of Structure-Based Drug Design & Discovery
| | - Xiao-Xiao Huang
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- Key Laboratory of Structure-Based Drug Design & Discovery
| | - Xue Sun
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- Key Laboratory of Structure-Based Drug Design & Discovery
| | - Ke-Chun Liu
- Biology Institute of Shandong Academy of Sciences
- Jinan
- China
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
- Key Laboratory of Structure-Based Drug Design & Discovery
| |
Collapse
|
27
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as chrysamide A from a deep-sea fungus Penicillium chrysogenum.
Collapse
|