1
|
Bastick KAC, Roberts DD, Watson AJB. The current utility and future potential of multiborylated alkanes. Nat Rev Chem 2024; 8:741-761. [PMID: 39327469 DOI: 10.1038/s41570-024-00650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)-B or C(sp3)-B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)-B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations.
Collapse
Affiliation(s)
- Kane A C Bastick
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Dean D Roberts
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
2
|
Guin A, Deswal S, Harariya MS, Biju AT. Lewis acid-catalyzed diastereoselective formal ene reaction of thioindolinones/thiolactams with bicyclobutanes. Chem Sci 2024; 15:12473-12479. [PMID: 39118603 PMCID: PMC11304820 DOI: 10.1039/d4sc02194k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Bicyclo[1.1.0]butanes (BCBs), featuring two fused cyclopropane rings, have found widespread application in organic synthesis. Their versatile reactivity towards radicals, nucleophiles, cations, and carbenes makes them suitable for various reactions, including ring-opening and annulation strategies. Despite this versatility, their potential as enophiles in an ene reaction remains underexplored. Considering this and given the challenges of achieving diastereoselectivity in ring-opening reactions of BCBs, herein, we present a unique method utilizing BCBs as enophiles in a mild and diastereoselective Sc(OTf)3-catalyzed formal ene reaction with thioindolinones/thiolactams, delivering 1,3-disubstituted cyclobutane derivatives in high yields and excellent regio- and diastereoselectivity. Notably, structurally different thiolactam derivatives underwent diastereoselective addition to BCBs, affording the corresponding cyclobutanes. The synthesized thioindole-substituted cyclobutanes could serve as a versatile tool for subsequent functional group manipulations.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| | - Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| | - Mahesh Singh Harariya
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| |
Collapse
|
3
|
Hou SY, Yan BC, Sun HD, Puno PT. Recent advances in the application of [2 + 2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:37. [PMID: 38861197 PMCID: PMC11166626 DOI: 10.1007/s13659-024-00457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Cyclobutanes are distributed widely in a large class of natural products featuring diverse pharmaceutical activities and intricate structural frameworks. The [2 + 2] cycloaddition is unequivocally the primary and most commonly used method for synthesizing cyclobutanes. In this review, we have summarized the application of the [2 + 2] cycloaddition with different reaction mechanisms in the chemical synthesis of selected cyclobutane-containing natural products over the past decade.
Collapse
Affiliation(s)
- Song-Yu Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Bing-Chao Yan
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Han-Dong Sun
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Pema-Tenzin Puno
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
4
|
McVeigh MS, Sorrentino JP, Hands AT, Garg NK. Access to Complex Scaffolds Through [2 + 2] Cycloadditions of Strained Cyclic Allenes. J Am Chem Soc 2024; 146:15420-15427. [PMID: 38768558 PMCID: PMC11459239 DOI: 10.1021/jacs.4c03369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We report the strain-induced [2 + 2] cycloadditions of cyclic allenes for the assembly of highly substituted cyclobutanes. By judicious choice of trapping agent, complex scaffolds bearing heteroatoms, fused rings, contiguous stereocenters, spirocycles, and quaternary centers are ultimately accessible. Moreover, we show that the resulting cycloadducts can undergo thermal isomerization. This study provides an alternative strategy to photochemical [2 + 2] cycloadditions for accessing highly functionalized cyclobutanes, while validating the use of underexplored strained intermediates for the assembly of complex architectures.
Collapse
Affiliation(s)
- Matthew S McVeigh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jacob P Sorrentino
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Allison T Hands
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Prysiazhniuk K, Polishchuk O, Shulha S, Gudzikevych K, Datsenko OP, Kubyshkin V, Mykhailiuk PK. Borylated cyclobutanes via thermal [2 + 2]-cycloaddition. Chem Sci 2024; 15:3249-3254. [PMID: 38425521 PMCID: PMC10901489 DOI: 10.1039/d3sc06600b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
A one-step approach to borylated cyclobutanes from amides of carboxylic acids and vinyl boronates is elaborated. The reaction proceeds via the thermal [2 + 2]-cycloaddition of in situ-generated keteniminium salts.
Collapse
Affiliation(s)
- Kateryna Prysiazhniuk
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| | - Oleksandr Polishchuk
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| | - Stanislav Shulha
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| | - Kyrylo Gudzikevych
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| | - Oleksandr P Datsenko
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| | - Vladimir Kubyshkin
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| | - Pavel K Mykhailiuk
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| |
Collapse
|
6
|
Prysiazhniuk K, Datsenko OP, Polishchuk O, Shulha S, Shablykin O, Nikandrova Y, Horbatok K, Bodenchuk I, Borysko P, Shepilov D, Pishel I, Kubyshkin V, Mykhailiuk PK. Spiro[3.3]heptane as a Saturated Benzene Bioisostere. Angew Chem Int Ed Engl 2024; 63:e202316557. [PMID: 38251921 DOI: 10.1002/anie.202316557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/23/2024]
Abstract
The spiro[3.3]heptane core, with the non-coplanar exit vectors, was shown to be a saturated benzene bioisostere. This scaffold was incorporated into the anticancer drug sonidegib (instead of the meta-benzene), the anticancer drug vorinostat (instead of the phenyl ring), and the anesthetic drug benzocaine (instead of the para-benzene). The patent-free saturated analogs obtained showed a high potency in the corresponding biological assays.
Collapse
Affiliation(s)
| | | | | | | | - Oleh Shablykin
- Enamine Ltd., Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094, Kyiv, Ukraine
| | | | | | | | - Petro Borysko
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Iryna Pishel
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | | |
Collapse
|
7
|
Tang L, Huang QN, Wu F, Xiao Y, Zhou JL, Xu TT, Wu WB, Qu S, Feng JJ. C(sp 2)-H cyclobutylation of hydroxyarenes enabled by silver-π-acid catalysis: diastereocontrolled synthesis of 1,3-difunctionalized cyclobutanes. Chem Sci 2023; 14:9696-9703. [PMID: 37736637 PMCID: PMC10510764 DOI: 10.1039/d3sc03258b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Ring-opening of bicyclo[1.1.0]butanes (BCBs) is emerging as a powerful strategy for 1,3-difunctionalized cyclobutane synthesis. However, reported radical strain-release reactions are typically plagued with diastereoselectivity issues. Herein, an atom-economic protocol for the highly chemo- and diastereoselective polar strain-release ring-opening of BCBs with hydroxyarenes catalyzed by a π-acid catalyst AgBF4 has been developed. The use of readily available starting materials, low catalyst loading, high selectivity (up to >98 : 2 d.r.), a broad substrate scope, ease of scale-up, and versatile functionalizations of the cyclobutane products make this approach very attractive for the synthesis of 1,1,3-trisubstituted cyclobutanes. Moreover, control experiments and theoretical calculations were performed to illustrate the reaction mechanism and selectivity.
Collapse
Affiliation(s)
- Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Qi-Nan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Shuanglin Qu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
8
|
Guo R, Brown MK. Lewis Acid-Promoted [2 + 2] Cycloadditions of Allenes and Ketenes: Versatile Methods for Natural Product Synthesis. Acc Chem Res 2023; 56:2253-2264. [PMID: 37540783 PMCID: PMC11041672 DOI: 10.1021/acs.accounts.3c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
ConspectusCycloaddition reactions are an effective method to quickly build molecular complexity. As predicted by the Woodward-Hoffmann rules, concerted cycloadditions with alkenes allow for the constructions of all possible stereoisomers of product by use of either the Z or E geometry. While this feature of cycloadditions is widely used in, for example, [4 + 2] cycloadditions, translation to [2 + 2] cycloadditions is challenging because of the often stepwise and therefore stereoconvergent nature of these processes. Over the past decade, our lab has explored Lewis acid-promoted [2 + 2] cycloadditions of electron-deficient allenes or ketenes with alkenes. The concerted, asynchronous cycloadditions allow for the synthesis of various cyclobutanes with control of stereochemistry.Our lab developed the first examples of Lewis acid-promoted ketene-alkene [2 + 2] cycloadditions. Compared with traditional thermal conditions, Lewis acid-promoted conditions have several advantages, such as increased reactivity, increased yield, improved diastereoselectivity, and, for certain cases, inverse diastereoselectivity. Detailed mechanistic studies revealed that the diastereoselectivity was controlled by the size of the substituent and the barrier of a deconjugation event. However, these reactions required the use of stoichiometric amounts of EtAlCl2 because of the product inhibition, which led us to investigate catalytic enantioselective [2 + 2] cycloadditions of allenoates with alkenes. Through the use of chiral oxazaborolidines, a broad range of cyclobutanes can be prepared with the control of enantioselectivity. Mechanistic experiments, including 2D-labled alkenes and Hammett analysis, illuminate likely transition state models for the cycloadditions. Additional studies led to the development of Lewis acid-catalyzed intramolecular stereoselective [2 + 2] cycloadditions of chiral allenic ketones/esters with alkenes.The methods we developed have been instrumental in the synthesis of several families of natural products. Specifically, one key lactone motif in (±)-gracilioether F was constructed by a ketene-alkene [2 + 2] cycloaddition and subsequent regioselective Baeyer-Villiger oxidation sequence. Enantioselective allenoate-alkene [2 + 2] cycloadditions allowed for the synthesis of (-)-hebelophyllene E. Another attempt of applying this method in the synthesis of (+)-[5]-ladderanoic acid failed to deliver the desired cyclobutane because of an unexpected rearrangement. The key cyclobutane was later assembled by a stepwise carboboration/Zweifel olefination process. Finally, the stereoselective [2 + 2] cycloadditions of allenic ketones and alkenes was applied in the syntheses of (-)-[3]-ladderanol, (+)-hippolide J, and (-)-cajanusine.
Collapse
Affiliation(s)
- Renyu Guo
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Fan Z, Strassfeld DA, Park HS, Wu K, Yu JQ. Formal γ-C-H Functionalization of Cyclobutyl Ketones: Synthesis of cis-1,3-Difunctionalized Cyclobutanes. Angew Chem Int Ed Engl 2023; 62:e202303948. [PMID: 37051944 PMCID: PMC10330309 DOI: 10.1002/anie.202303948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/14/2023]
Abstract
1,3-Difunctionalized cyclobutanes are an emerging scaffold in medicinal chemistry that can confer beneficial pharmacological properties to small-molecule drug candidates. However, the diastereocontrolled synthesis of these compounds typically requires complicated synthetic routes, indicating a need for novel methods. Here, we report a sequential C-H/C-C functionalization strategy for the stereospecific synthesis of cis-γ-functionalized cyclobutyl ketones from readily available cyclobutyl aryl ketones. Specifically, a bicyclo[1.1.1]pentan-2-ol intermediate is generated from the parent cyclobutyl ketone via an optimized Norrish-Yang procedure. This intermediate then undergoes a ligand-enabled, palladium-catalyzed C-C cleavage/functionalization to produce valuable cis-γ-(hetero)arylated, alkenylated, and alkynylated cyclobutyl aryl ketones, the benzoyl moiety of which can subsequently be converted to a wide range of functional groups including amides and esters.
Collapse
Affiliation(s)
- Zhoulong Fan
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniel A Strassfeld
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Han Seul Park
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kevin Wu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Hajinasiri R. Allenoates in organic synthesis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Liu Y, Ni D, Brown MK. Boronic Ester Enabled [2 + 2]-Cycloadditions by Temporary Coordination: Synthesis of Artochamin J and Piperarborenine B. J Am Chem Soc 2022; 144:18790-18796. [PMID: 36200833 PMCID: PMC9832331 DOI: 10.1021/jacs.2c08777] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A strategy for the photosensitized cycloaddition of alkenylboronates and allylic alcohols by a temporary coordination is presented. The process allows for the synthesis of a diverse range of cyclobutylboronates. Key to development of these reactions is the temporary coordination of the allylic alcohol to the Bpin unit. This not only allows for the reaction to proceed in an intramolecular manner but also allows for high levels of stereo and regiocontrol. A key aspect of these studies is the utility of the cycloadducts in the synthesis of complex natural products artochamin J and piperarborenine B.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Dongshun Ni
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Alves AJS, Alves NG, Bártolo I, Fontinha D, Caetano S, Prudêncio M, Taveira N, Pinho E Melo TMVD. Unveiling a family of spiro-β-lactams with anti-HIV and antiplasmodial activity via phosphine-catalyzed [3+2] annulation of 6-alkylidene-penicillanates and allenoates. Front Chem 2022; 10:1017250. [PMID: 36277353 PMCID: PMC9585939 DOI: 10.3389/fchem.2022.1017250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 01/02/2023] Open
Abstract
The molecular architecture of spirocyclic compounds has been widely explored within the medicinal chemistry field to obtain new compounds with singular three-dimensional pharmacophoric features and improved bioactivity. Herein, the synthesis of 68 new spirocyclopentene-β-lactams is described, resulting from a rational drug design and structural modulation of a highly promising lead compound BSS-730A, previously identified as having dual antimicrobial activity associated with a novel mechanism of action. Among this diverse library of new compounds, 22 were identified as active against HIV-1, with eight displaying an IC50 lower than 50 nM. These eight compounds also showed nanomolar activity against HIV-2, and six of them displayed micromolar antiplasmodial activity against both the hepatic and the blood stages of infection by malaria parasites, in agreement with the lead molecule’s bioactivity profile. The spirocyclopentene-β-lactams screened also showed low cytotoxicity against TZM-bl and Huh7 human cell lines. Overall, a family of new spirocyclopentene penicillanates with potent activity against HIV and/or Plasmodium was identified. The present structure–activity relationship open avenues for further development of spirocyclopentene-β-lactams as multivalent, highly active broad spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Américo J S Alves
- Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Nuno G Alves
- Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Inês Bártolo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Soraia Caetano
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Caparica, Portugal
| | - Teresa M V D Pinho E Melo
- Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Shankar M, Kalyani A, Anitha M, Siva Reddy A, Swamy KCK. Divergent Reactivity of Phosphorylated and Related Allenes: [4 + 2] Cycloaddition with 3,6-Diphenyltetrazine, Self-Addition Leading to Dimers and [Pd]-Complex Formation. J Org Chem 2022; 87:13683-13697. [PMID: 36197101 DOI: 10.1021/acs.joc.2c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorus-based naphthalenes are formed by self-dimerization-cum-cyclization of α-aryl allenylphosphonates or allenylphosphine oxides using catalytic Pd(OAc)2in the presence of PPh3 and Et3N . This reaction involves [4 + 2]-cycloaddition with the (β,γ) double bond of one allene as the dienophile; the double bonds at the α-aryl-(β',γ') group and (α,β)-carbons of the second allene act as the diene part. A subsequent proton shift also takes place. Upon treating allenylphosphine oxides with Pd(OAc)2 [stoichiometry 2:1] in the presence of PPh3/Ag2CO3, a [Pd]-complex is isolated and structurally characterized. This complex can be used as a catalyst for C-C bond-forming reactions of phosphorus-based allenes with 2-iodophenol. Densely substituted 3,6-diphenylpyridazines are conveniently obtained in excellent yields by a thermally induced regioselective Inverse Electron Demand Diels-Alder (IEDDA) reaction of allenes with 3,6-diphenyltetrazine, followed by a [1,3]-H shift.
Collapse
Affiliation(s)
- Mallepalli Shankar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Adula Kalyani
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mandala Anitha
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Alla Siva Reddy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
14
|
Liu Y, Ni D, Stevenson BG, Tripathy V, Braley SE, Raghavachari K, Swierk JR, Brown MK. Photosensitized [2+2]-Cycloadditions of Alkenylboronates and Alkenes. Angew Chem Int Ed Engl 2022; 61:e202200725. [PMID: 35446458 DOI: 10.1002/anie.202200725] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 12/17/2022]
Abstract
A new strategy for the synthesis of highly versatile cyclobutylboronates via the photosensitized [2+2]-cycloaddition of alkenylboronates and alkenes is presented. The process is mechanistically different from other processes in that energy transfer occurs with the alkenylboronate as opposed to the other alkene. This strategy allows for the synthesis of an array of diverse cyclobutylboronates. The conversion of these adducts to other compounds as well as their utility in the synthesis of melicodenine C is demonstrated.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Dongshun Ni
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Bernard G Stevenson
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - Vikrant Tripathy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Sarah E Braley
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - John R Swierk
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| |
Collapse
|
15
|
O'Dowd H, Manske JL, Freedman SA, Cochran JE. Ketoreductase-Catalyzed Access to Axially Chiral 2,6-Disubstituted Spiro[3.3]heptane Derivatives. Org Lett 2022; 24:3431-3434. [PMID: 35486487 DOI: 10.1021/acs.orglett.2c01378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The desymmetrization of a prochiral 6-oxaspiro[3.3]heptane-2-carboxylic acid derivative via biocatalytic ketoreductase-mediated reduction has provided access to both enantiomers in high ee. The axially chiral alcohol was converted to the corresponding ester alcohol, amino acid, and amino alcohol building blocks while high enantiopurity was maintained.
Collapse
Affiliation(s)
- Hardwin O'Dowd
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Jenna L Manske
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Seth A Freedman
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - John E Cochran
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| |
Collapse
|
16
|
Liu Y, Ni D, Stevenson BG, Tripathy V, Braley SE, Raghavachari K, Swierk JR, Brown MK. Photosensitized [2+2]‐Cycloadditions of Alkenylboronates and Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanyao Liu
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Dongshun Ni
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Bernard G. Stevenson
- Department of Chemistry Binghamton University 4400 Vestal Parkway East Binghamton NY 13902 USA
| | - Vikrant Tripathy
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Sarah E. Braley
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Krishnan Raghavachari
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - John R. Swierk
- Department of Chemistry Binghamton University 4400 Vestal Parkway East Binghamton NY 13902 USA
| | - M. Kevin Brown
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| |
Collapse
|
17
|
Silver(I)-catalyzed Hydroamination of (3S,4R)-4-Acetoxy-3-[(R)-1-tert-butyldimethylsiloxy)ethyl]azetidine-2-one Derivatives for the Synthesis of Carbapenem Skeleton. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Jayasundara CRK, Gil-Negrete JM, Montero Bastidas JR, Chhabra A, Martínez MM, Pérez Sestelo J, Smith MR, Maleczka RE. Merging Iridium-Catalyzed C-H Borylations with Palladium-Catalyzed Cross-Couplings Using Triorganoindium Reagents. J Org Chem 2021; 87:751-759. [PMID: 34889604 DOI: 10.1021/acs.joc.1c01978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A versatile and efficient method to prepare borylated arenes furnished with alkyl, alkenyl, alkynyl, aryl, and heteroaryl functional groups is developed by merging Ir-catalyzed C-H borylations (CHB) with a chemoselective palladium-catalyzed cross-coupling of triorganoindium reagents (Sarandeses-Sestelo coupling) with aryl halides bearing a boronic ester substituent. Using triorganoindium cross-coupling reactions to introduce unsaturated moieties enables the synthesis of borylated arenes that would be difficult to access through the direct application of the CHB methodology. The sequential double catalyzed procedure can be also performed in one vessel.
Collapse
Affiliation(s)
| | - José M Gil-Negrete
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, E-15071 A Coruña, Spain
| | - Jose R Montero Bastidas
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Arzoo Chhabra
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - M Montserrat Martínez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, E-15071 A Coruña, Spain
| | - José Pérez Sestelo
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, E-15071 A Coruña, Spain
| | - Milton R Smith
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Robert E Maleczka
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
19
|
Scholz SO, Kidd JB, Capaldo L, Flikweert NE, Littlefield RM, Yoon TP. Construction of Complex Cyclobutane Building Blocks by Photosensitized [2 + 2] Cycloaddition of Vinyl Boronate Esters. Org Lett 2021; 23:3496-3501. [PMID: 33844561 DOI: 10.1021/acs.orglett.1c00938] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclobutyl moieties in drug molecules are rare, and in general, they are minimally substituted and stereochemically simple. Methods to assemble structurally complex cyclobutane building blocks suitable for rapid diversification are thus highly desirable. We report herein a photosensitized [2 + 2] cycloaddition with vinyl boronate esters affording straightforward access to complex, densely functionalized cyclobutane scaffolds. Mechanistic studies suggest an activation mode involving energy transfer to the styrenyl alkene rather than the vinyl boronate ester.
Collapse
Affiliation(s)
- Spencer O Scholz
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison Wisconsin 53706, United States
| | - Jesse B Kidd
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison Wisconsin 53706, United States
| | - Luca Capaldo
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison Wisconsin 53706, United States.,Photogreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Niecia E Flikweert
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison Wisconsin 53706, United States
| | - Rowan M Littlefield
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison Wisconsin 53706, United States
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison Wisconsin 53706, United States
| |
Collapse
|
20
|
Regio- and stereoselective synthesis of cyclobutanes by nickel-catalyzed homodimerizative [2 + 2] cycloaddition using allenamides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Chang MY, Tsai MC. Synthesis of benzofused cyclobutaoxepanones via intramolecular annulation of o-cinnamyl chalcones. Org Biomol Chem 2021; 19:2254-2268. [PMID: 33605971 DOI: 10.1039/d1ob00058f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intramolecular stereoselective annulation of o-cinnamyloxy chalcones provides two kinds of tricyclic benzofused cyclobutaoxepanones via the synthesized routes of DABCO/NBS (1,4-diazabicyclo[2.2.2]octane/N-bromosuccinimide)-mediated Baylis-Hillman type cyclization or low-pressure mercury (LP Hg) lamp-promoted photocontrolled [2 + 2] cycloaddition. Diversified reaction conditions have been investigated for one-pot facile, high-yield transformation.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Min-Chen Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
22
|
Warsitz M, Doye S. Two‐Step Procedure for the Synthesis of 1,2,3,4‐Tetrahydro‐quinolines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael Warsitz
- Institut für Chemie Universität Oldenburg Carl‐von‐Ossietzky‐Straße 9‐11 26129 Oldenburg Germany
| | - Sven Doye
- Institut für Chemie Universität Oldenburg Carl‐von‐Ossietzky‐Straße 9‐11 26129 Oldenburg Germany
| |
Collapse
|
23
|
Kang T, Erbay TG, Xu KL, Gallego GM, Burtea A, Nair SK, Patman RL, Zhou R, Sutton SC, McAlpine IJ, Liu P, Engle KM. Multifaceted Substrate-Ligand Interactions Promote the Copper-Catalyzed Hydroboration of Benzylidenecyclobutanes and Related Compounds. ACS Catal 2020; 10:13075-13083. [PMID: 33791144 DOI: 10.1021/acscatal.0c03622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A unified synthetic strategy to access tertiary four-membered carbo/heterocyclic boronic esters is reported. Use of a Cu(I) catalyst in combination with a modified dppbz ligand enables regioselective hydroboration of various trisubstituted benzylidenecyclobutanes and carbo/heterocyclic analogs. The reaction conditions are mild, and the method tolerates a wide range of medicinally relevant heteroarenes. The protocol can be conveniently conducted on gram-scale, and the tertiary boronic ester products undergo facile diversification into valuable targets. Reaction kinetics and computational studies indicate that the migratory insertion step is turnover-limiting and accelerated by electron-withdrawing groups on the dppbz ligand. Energy decomposition analysis (EDA) calculations reveal that electron-deficient P-aryl groups on the dppbz ligand enhance the T-shaped π/π interactions with the substrate and stabilize the migratory insertion transition state.
Collapse
Affiliation(s)
- Taeho Kang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tuğçe G. Erbay
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kane L. Xu
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gary M. Gallego
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Alexander Burtea
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Sajiv K. Nair
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Ryan L. Patman
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Ru Zhou
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Scott C. Sutton
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Indrawan J. McAlpine
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Keary M. Engle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
24
|
Bennett SH, Fawcett A, Denton EH, Biberger T, Fasano V, Winter N, Aggarwal VK. Difunctionalization of C-C σ-Bonds Enabled by the Reaction of Bicyclo[1.1.0]butyl Boronate Complexes with Electrophiles: Reaction Development, Scope, and Stereochemical Origins. J Am Chem Soc 2020; 142:16766-16775. [PMID: 32885974 DOI: 10.1021/jacs.0c07357] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Difunctionalization reactions of C-C σ-bonds have the potential to streamline access to molecules that would otherwise be difficult to prepare. However, the development of such reactions is challenging because C-C σ-bonds are typically unreactive. Exploiting the high ring-strain energy of polycyclic carbocycles is a common strategy to weaken and facilitate the reaction of C-C σ-bonds, but there are limited examples of highly strained C-C σ-bonds being used in difunctionalization reactions. We demonstrate that highly strained bicyclo[1.1.0]butyl boronate complexes (strain energy ca. 65 kcal/mol), which were prepared by reacting boronic esters with bicyclo[1.1.0]butyl lithium, react with electrophiles to achieve the diastereoselective difunctionalization of the strained central C-C σ-bond of the bicyclo[1.1.0]butyl unit. The reaction shows broad substrate scope, with a range of different electrophiles and boronic esters being successfully employed to form a diverse set of 1,1,3-trisubstituted cyclobutanes (>50 examples) with high diastereoselectivity. The high diastereoselectivity observed has been rationalized based on a combination of experimental data and DFT calculations, which suggests that separate concerted and stepwise reaction mechanisms are operating, depending upon the migrating substituent and electrophile used.
Collapse
Affiliation(s)
- Steven H Bennett
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Alexander Fawcett
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Elliott H Denton
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Tobias Biberger
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Valerio Fasano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Nils Winter
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
25
|
Grygorenko OO, Moskvina VS, Hryshchuk OV, Tymtsunik AV. Cycloadditions of Alkenylboronic Derivatives. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The literature on cycloaddition reactions of boron-containing alkenes is surveyed with 132 references. The data are categorized according to the reaction type ([2+1], [2+2], [3+2], [4+2], and [4+3] cycloadditions). The cyclopropanation and the Diels–Alder reactions of alkenylboronic derivatives have been studied more or less comprehensively, and for some substrates, they can be considered as convenient methods for the rapid regio- and stereoselective construction of even complex cyclic systems. Other types of the cycloadditions, as well as mechanistic aspects of the processes, have been addressed less thoroughly in the previous works.1 Introduction2 [2+1] Cycloaddition2.1 Cyclopropanation2.1.1 With Methylene Synthetic Equivalents2.1.2 With Substituted Carbenoids2.2 Epoxidation2.3 Aziridination3 [2+2] Cycloaddition4 [3+2] Cycloaddition4.1 With Nitrile Oxides4.2 With Diazoalkanes4.3 With Nitrones4.4 With Azomethine Ylides5 [4+2] Cycloaddition6 [4+3] Cycloaddition7 Conclusions and Outlook
Collapse
Affiliation(s)
| | - Viktoriia S. Moskvina
- Taras Shevchenko National University of Kyiv
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
| | | | - Andriy V. Tymtsunik
- Enamine Ltd
- Faculty of Chemical Technology, National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’
| |
Collapse
|
26
|
Fang Z, Al-Maharik N, Kirsch P, Bremer M, Slawin AMZ, O'Hagan D. Synthesis of organic liquid crystals containing selectively fluorinated cyclopropanes. Beilstein J Org Chem 2020; 16:674-680. [PMID: 32362945 PMCID: PMC7176930 DOI: 10.3762/bjoc.16.65] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/03/2020] [Indexed: 01/27/2023] Open
Abstract
This paper describes the synthesis of a series of organic liquid crystals (LCs) containing selectively fluorinated cyclopropanes at their termini. The syntheses used difluorocarbene additions to olefin precursors, an approach which proved straightforward such that these liquid crystal candidates could be efficiently prepared. Their physical and thermodynamic properties were evaluated and depending on individual structures, they either displayed positive or negative dielectric anisotropy. The study gives some guidance into effective structure–property relationships for the design of LCs containing selectively fluorinated cyclopropane motifs.
Collapse
Affiliation(s)
- Zeguo Fang
- School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - Nawaf Al-Maharik
- School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom.,Department of Chemistry, Faculty of Science, An Najah National University, Nablus, Palestine
| | - Peer Kirsch
- Merck KGaA, Liquid Crystal R&D Chemistry, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Matthias Bremer
- Merck KGaA, Liquid Crystal R&D Chemistry, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Alexandra M Z Slawin
- School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - David O'Hagan
- School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
27
|
Demchuk OP, Hryshchuk OV, Vashchenko BV, Kozytskiy AV, Tymtsunik AV, Komarov IV, Grygorenko OO. Photochemical [2 + 2] Cycloaddition of Alkenyl Boronic Derivatives: An Entry into 3-Azabicyclo[3.2.0]heptane Scaffold. J Org Chem 2020; 85:5927-5940. [PMID: 32233365 DOI: 10.1021/acs.joc.0c00265] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The synthesis of 3-azabicyclo[3.2.0]heptyl boropinacolates and trifluoroborates via the [2 + 2] photocycloaddition of the corresponding alkenyl boronic derivatives and maleimides or maleic anhydride is described. Optimization of the reaction conditions (i.e., wavelength, concentration of the reagents, photosensitizer) was carried out, and the scope and limitations of the method were studied. Alkenyl boronic acid pinacolates were found to be more suitable for the [2 + 2] cycloaddition, providing better reaction outcomes compared to the trifluoroborates. The utility of this approach was shown by the preparation of bi- and trifunctional building blocks (21 examples), which could be easily synthesized on up to 60 g scale. These cycloadducts provide a convenient entry into the 3-azabicyclo[3.2.0]heptane scaffold through the C-C coupling or oxidative deborylation reactions.
Collapse
Affiliation(s)
- Oleksandr P Demchuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine
| | - Oleksandr V Hryshchuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Bohdan V Vashchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Andriy V Kozytskiy
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,L. V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Nauky Avenue, 31, Kyiv 03028, Ukraine
| | - Andriy V Tymtsunik
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Prospect Peremogy 37, Kyiv 03056, Ukraine
| | - Igor V Komarov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| |
Collapse
|
28
|
Joannou MV, Hoyt JM, Chirik PJ. Investigations into the Mechanism of Inter- and Intramolecular Iron-Catalyzed [2 + 2] Cycloaddition of Alkenes. J Am Chem Soc 2020; 142:5314-5330. [DOI: 10.1021/jacs.0c00250] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew V. Joannou
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States of America
| | - Jordan M. Hoyt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States of America
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States of America
| |
Collapse
|
29
|
Parsutkar MM, Pagar VV, RajanBabu TV. Catalytic Enantioselective Synthesis of Cyclobutenes from Alkynes and Alkenyl Derivatives. J Am Chem Soc 2019; 141:15367-15377. [PMID: 31476274 DOI: 10.1021/jacs.9b07885] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Discovery of enantioselective catalytic reactions for the preparation of chiral compounds from readily available precursors, using scalable and environmentally benign chemistry, can greatly impact their design, synthesis, and eventually manufacture on scale. Functionalized cyclobutanes and cyclobutenes are important structural motifs seen in many bioactive natural products and pharmaceutically relevant small molecules. They are also useful precursors for other classes of organic compounds such as other cycloalkane derivatives, heterocyclic compounds, stereodefined 1,3-dienes, and ligands for catalytic asymmetric synthesis. The simplest approach to make cyclobutenes is through an enantioselective [2 + 2]-cycloaddition between an alkyne and an alkenyl derivative, a reaction which has a long history. Yet known reactions of this class that give acceptable enantioselectivities are of very narrow scope and are strictly limited to activated alkynes and highly reactive alkenes. Here, we disclose a broadly applicable enantioselective [2 + 2]-cycloaddition between wide variety of alkynes and alkenyl derivatives, two of the most abundant classes of organic precursors. The key cycloaddition reaction employs catalysts derived from readily synthesized ligands and an earth-abundant metal, cobalt. Over 50 different cyclobutenes with enantioselectivities in the range of 86-97% ee are documented. With the diverse functional groups present in these compounds, further diastereoselective transformations are easily envisaged for synthesis of highly functionalized cyclobutanes and cyclobutenes. Some of the novel observations made during these studies including a key role of a cationic Co(I)-intermediate, ligand and counterion effects on the reactions, can be expected to have broad implications in homogeneous catalysis beyond the highly valuable synthetic intermediates that are accessible by this route.
Collapse
Affiliation(s)
- Mahesh M Parsutkar
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Vinayak Vishnu Pagar
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
30
|
Wahl JM, Conner ML, Brown MK. Allenoates in Enantioselective [2+2] Cycloadditions: From a Mechanistic Curiosity to a Stereospecific Transformation. J Am Chem Soc 2018; 140:15943-15949. [PMID: 30394735 DOI: 10.1021/jacs.8b10008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Identification of a novel catalyst-allenoate pair allows enantioselective [2+2] cycloaddition of α-methylstyrene. To understand the origin of selectivity, a detailed mechanistic investigation was conducted. Herein, two competing reaction pathways are proposed, which operate simultaneously and funnel the alkenes to the same axially chiral cyclobutanes. In agreement with the Woodward-Hoffmann rules, this mechanistic curiosity can be rationalized through a unique symmetry operation that was elucidated by deuteration experiments. In the case of 1,1-diarylalkenes, distal communication between the catalyst and alkene is achieved through subtle alteration of electronic properties and conformation. In this context, a Hammett study lends further credibility to a concerted mechanism. Thus, extended scope exploration, including β-substitution on the alkene to generate two adjacent stereocenters within the cyclobutane ring, is achieved in a highly stereospecific and enantioselective fashion (33 examples, up to >99:1 er).
Collapse
Affiliation(s)
- Johannes M Wahl
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Michael L Conner
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - M Kevin Brown
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
31
|
Ma S, Yu A, Meng X. Phosphine-catalyzed [4 + 2] annulation of γ-benzyl allenoates: facile synthesis of benzothieno[3,2-b]pyran derivatives. Org Biomol Chem 2018; 16:2885-2892. [DOI: 10.1039/c8ob00004b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient tris(4-methoxyphenyl)phosphane catalyzed domino reaction between γ-benzyl allenoate and ethyl (Z)-2-(3-oxobenzo[b]thiophen-2(3H)-ylidene)acetate has been developed, which produces a series of 2H-benzo[4,5]thieno[3,2-b]pyran derivatives in high yields.
Collapse
Affiliation(s)
- Shanshan Ma
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry & Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry & Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry & Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| |
Collapse
|
32
|
Sandridge MJ, McLarney BD, Williams CW, France S. α-Alkylidene-γ-butyrolactone Formation via Bi(OTf) 3-Catalyzed, Dehydrative, Ring-Opening Cyclizations of Cyclopropyl Carbinols: Understanding Substituent Effects and Predicting E/Z Selectivity. J Org Chem 2017; 82:10883-10897. [PMID: 28876932 DOI: 10.1021/acs.joc.7b01706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Bi(OTf)3-catalyzed ring-opening cyclization of (hetero)aryl cyclopropyl carbinols to form α-alkylidene-γ-butyrolactones (ABLs) is reported. This transformation represents different chemoselectivity from previous reports that demonstrated formation of (hetero)aryl-fused cyclohexa-1,3-dienes upon acid-promoted cyclopropyl carbinol ring opening. ABLs are obtained in up to 89% yield with a general preference for the E-isomers. Mechanistically, Bi(OTf)3 serves as a stable and easy to handle precursor to TfOH. TfOH then catalyzes the formation of cyclopropyl carbinyl cations, which undergo ring opening, intramolecular trapping by the neighboring ester group, subsequent hydrolysis, and loss of methanol resulting in the formation of the ABLs. The nature and relative positioning of the substituents on both the carbinol and the cyclopropane determine both chemo- and stereoselective outcomes. Carbinol substituents determine the extent of cyclopropyl carbinyl cation formation. The cyclopropane donor substituents determine the overall reaction chemoselectivity. Weakly stabilizing or electron-poor donor groups provide better yields of the ABL products. In contrast, copious amounts of competing products are observed with highly stabilizing cyclopropane donor substituents. Finally, a predictive model for E/Z selectivity was developed using DFT calculations.
Collapse
Affiliation(s)
- Matthew J Sandridge
- School of Chemistry and Biochemistry and ‡Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Brett D McLarney
- School of Chemistry and Biochemistry and ‡Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Corey W Williams
- School of Chemistry and Biochemistry and ‡Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Stefan France
- School of Chemistry and Biochemistry and ‡Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|