1
|
Bondarev VL, Festa AA, Storozhenko OA, Kokorekin VA, Novikov AP, Varlamov AV, Voskressensky LG. Electrochemical Synthesis of 3-(Sulfonyl)quinol-4-ones from o-Alkynyl- N-(formyl)anilides and Sulfinates. Org Lett 2025; 27:212-216. [PMID: 39719928 DOI: 10.1021/acs.orglett.4c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Electrolysis of o-alkynyl-N-(formyl)anilides and sodium sulfinates on graphite electrodes delivers biologically sound 3-(sulfonyl)quinol-4-ones with moderate to good yields. The reaction is carried out in an undivided cell in the presence of silver(I) oxide with potassium iodide or sodium tetrafluoroborate as the supporting electrolyte. The reaction tolerates variously substituted anilides as well as aryl and alkyl sulfinates. The transformation proceeds as a domino sequence of oxysulfonylation and cyclocondensation steps.
Collapse
Affiliation(s)
- Vladimir L Bondarev
- Organic Chemistry Department, Science Faculty, Patrice Lumumba Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya strasse, 6, 117198 Moscow, Russia
| | - Alexey A Festa
- Organic Chemistry Department, Science Faculty, Patrice Lumumba Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya strasse, 6, 117198 Moscow, Russia
| | - Olga A Storozhenko
- Organic Chemistry Department, Science Faculty, Patrice Lumumba Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya strasse, 6, 117198 Moscow, Russia
| | - Vladimir A Kokorekin
- Sechenov First Moscow State Medical University, Trubetskaya strasse 8-2, 119991 Moscow, Russian Federation
| | - Anton P Novikov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prospect, 31 Building 4, 119071 Moscow, Russia
| | - Alexey V Varlamov
- Organic Chemistry Department, Science Faculty, Patrice Lumumba Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya strasse, 6, 117198 Moscow, Russia
| | - Leonid G Voskressensky
- Organic Chemistry Department, Science Faculty, Patrice Lumumba Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya strasse, 6, 117198 Moscow, Russia
| |
Collapse
|
2
|
Xia D, Shi Y, Jiang L, Li Y, Kong J. Recent advances in the radical cascade reaction for constructing nitrogen heterocycles using azides as radical acceptors. Org Biomol Chem 2024; 22:5511-5523. [PMID: 38904322 DOI: 10.1039/d4ob00732h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Due to the high conversion properties, azide compounds are widely utilized in organic synthesis. For instance, azide compounds readily release nitrogen to form a new N-C bond when they function as radical acceptors for the active intermediates in the reaction. Over the past decade, strategies employing azides as radical acceptors to construct nitrogen heterocycles have been extensively developed. This approach has emerged as a crucial method for synthesizing nitrogen heterocycles. Therefore, this paper provides a review of the research advancements in tandem cyclization reactions using azides as radical acceptors, summarizing the process of reaction design, exploration, reasoning of the mechanism, and prospects for further research of these reactions.
Collapse
Affiliation(s)
- Dong Xia
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China.
| | - Yun Shi
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China.
| | - Liying Jiang
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China.
| | - Yang Li
- School of Bioengineering, Huainan Normal University, Huainan, 232038, P. R. China.
| | - Jianfei Kong
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China.
| |
Collapse
|
3
|
Zhong LJ, Chen H, Shang X, Xiong BQ, Tang KW, Liu Y. Oxidant-Assisted Sulfonylation/Cyclization Cascade Synthesis of Alkylsulfonylated Oxindoles via the Insertion of SO 2. J Org Chem 2024; 89:5409-5422. [PMID: 38563439 DOI: 10.1021/acs.joc.3c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An oxidant-assisted tandem sulfonylation/cyclization of electron-deficient alkenes with 4-alkyl-substituted Hantzsch esters and Na2S2O5 for the preparation of 3-alkylsulfonylated oxindoles under mild conditions in the absence of a photocatalyst and transition metal catalyst is established. The mechanism studies show that the alkyl radicals, which come from the cleavage of the C-C bond in 4-substituted Hantzsch esters under oxidant conditions, subsequently undergo the in situ insertion of sulfur dioxide to generate the crucial alkylsulfonyl radical intermediates. This three-component reaction provides an efficient and facile route for the construction of alkylsulfonylated oxindoles and avoids the use of highly toxic alkylsulfonyl chlorides or alkylsulfonyl hydrazines as alkylsulfonyl sources.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hui Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xuan Shang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
4
|
Halnor SV, Dhote PS, Ramana CV. Construction of the quinobenzoxazine core via gold-catalyzed dual annulation of azide-tethered alkynones with anthranils. Org Biomol Chem 2023; 21:2127-2137. [PMID: 36794667 DOI: 10.1039/d3ob00098b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A new catalytic method for the construction of the quinobenzoxazine core has been developed employing the gold-catalyzed cyclization of o-azidoacetylenic ketones in the presence of anthranils. The overall process comprises of a gold-catalyzed 6-endo-dig cyclisation of o-azidoacetylenic ketone leading to a α-imino gold carbene and subsequent carbene transfer to anthranil leading to the 3-aryl-imino-quinoline-4-one intermediate, which undergoes 6π-electrocyclization and aromatization to form the central quinobenzoxazine core. This transformation provides a new approach to a diverse array of quinobenzoxazine structures, in addition to being scalable and having mild reaction conditions.
Collapse
Affiliation(s)
- Swapnil V Halnor
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pawan S Dhote
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India.
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Chen K, Huang D, Sun X. Strategy Analysis of Ynones’ Radical Reactions. MINI-REV ORG CHEM 2022. [DOI: 10.2174/1570193x18666210810154051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
This review highlights the multifaceted synthetic applications of ynones in radical reactions.
Substantial progress has been made over the last decade (2010-2020) in the utilization of
ynones. Herein, the chemistry of ynones is divided into three sections based on the classes of critical
mechanistic insights: (1) radical addition and intramolecular cyclization; (2) radical addition
and intermolecular annulation; (3) radical addition and coupling. We hope that this review will
promote future research in this area.
Collapse
Affiliation(s)
- Kaijun Chen
- Department of Chemistry, Lishui University, Lishui City 323000, Zhejiang Province, P.R. China
| | - Dayun Huang
- Department of Chemistry, Lishui University, Lishui City 323000, Zhejiang Province, P.R. China
| | - Xiangyu Sun
- Torch High Technology Industry Development Center, Ministry of Science & Technology, Xicheng District, Beijing, P.R. China
| |
Collapse
|
6
|
Lv Y, Cui H, Meng N, Yue H, Wei W. Recent advances in the application of sulfinic acids for the construction of sulfur-containing compounds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Silva VLM, Pinto DCGA, Santos CMM, Rocha DHA. 15.4.5 Quinolinones and Related Systems (Update 2022). KNOWLEDGE UPDATES 2022/3 2022. [DOI: 10.1055/sos-sd-115-01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractQuinolinones, of which the quinolin-4(1H)-one ring system can be highlighted, represent an exciting class of nitrogen heterocycles. The quinolinone motif can be found in many natural compounds and approved drugs for several diseases. This chapter is a comprehensive survey of the methods for the synthesis of quinolin-2(1H)-ones, quinolin-4(1H)-ones, and their thio- and amino derivatives, and is an update to the previous Science of Synthesis chapter (Section 15.4), covering the period between 2003 and 2020.
Collapse
|
8
|
Yang M, Liu T, Gong Y, Ai QW, Zhao YL. Rhodium-catalyzed coupling-cyclization of o-alkynyl/propargyl arylazides or o-azidoaryl acetylenic ketones with arylisocyanides: synthesis of 6 H-indolo[2,3- b]quinolines, dibenzonaphthyridones and dihydrodibenzo[ b, g] [1,8]-naphthyridines. Org Chem Front 2022. [DOI: 10.1039/d2qo00503d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The developed rhodium-catalyzed coupling-cyclization provides a new strategy for the assembly of 6H-indolo[2,3-b]quinolines, dibenzonaphthyridones and dihydrodibenzo[b,g] [1,8]-naphthyridines.
Collapse
Affiliation(s)
- Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tao Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yue Gong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qing-Wen Ai
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
9
|
Bao R, Feng Y, Deng D, Huang D, Sun X. Sulfinic Acids in Organic Synthesis: A Review of Recent Studies. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ruwei Bao
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yanping Feng
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Danfeng Deng
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Dayun Huang
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Xiangyu Sun
- Torch High Technology Industry Development Center Ministry of Science & technology
| |
Collapse
|
10
|
Rao MS, Hussain S. DABCO-mediated decarboxylative cyclization of isatoic anhydride with aroyl/heteroaroyl/alkoylacetonitriles under microwave conditions: Strategy for the synthesis of substituted 4-quinolones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Abstract
A metal-free two-component alkynylsulfonylation of vinylarenes with aryl alkynylsulfones to afford various β-sulfonyl alkynes in moderate to excellent yields under mild conditions is developed.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Huan Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| |
Collapse
|
12
|
Mulina OM, Ilovaisky AI, Parshin VD, Terent'ev AO. Oxidative Sulfonylation of Multiple Carbon‐Carbon bonds with Sulfonyl Hydrazides, Sulfinic Acids and their Salts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Vadim D. Parshin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| |
Collapse
|
13
|
Yang W, Zhang M, Feng J. Recent Advances in the Construction of Spiro Compounds
via
Radical Dearomatization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000636] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Chao Yang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
- Guangling College Yangzhou University Yangzhou 225009 P. R. China
| | - Ming‐Ming Zhang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Jian‐Guo Feng
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| |
Collapse
|
14
|
Zheng X, Zhong T, Zhang L, Chen J, Chen Z, Jiang X, Yu C. Radical-Triggered Cyclization of Methylthio-Substituted Alkynones: Synthesis of Diverse 3-Alkylthiochromones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Lei Zhang
- University of Technology; Hangzhou P.R.China
| | - Junyu Chen
- University of Technology; Hangzhou P.R.China
| | - Zhiwei Chen
- University of Technology; Hangzhou P.R.China
| | | | | |
Collapse
|
15
|
Huang J, Su H, Bao M, Qiu L, Zhang Y, Xu X. Gold(iii)-catalyzed azide-yne cyclization/O-H insertion cascade reaction for the expeditious construction of 3-alkoxy-4-quinolinone frameworks. Org Biomol Chem 2020; 18:3888-3892. [PMID: 32373897 DOI: 10.1039/d0ob00745e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gold-catalyzed 6-endo-dig azide-yne cyclization/O-H insertion cascade reaction of azide-tethered alkynes with alcohols has been developed, and it provides an expeditious access to 3-alkoxy-4-quinoline derivatives in good to high yields under mild and neutral reaction conditions with broad substrate generality. The utility of this method is emphasized by a scalable experiment and concise total synthesis of a bioactive natural product Leiokinine A, and other bioactive quinoline analogs.
Collapse
Affiliation(s)
- Jingjing Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Han Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Lihua Qiu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanqing Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China. and College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Ueda JI, Enomoto Y, Seki M, Konishi T, Ogasawara M, Yoshida K. Oxidative Cyclization of o-(1-Hydroxy-2-alkynyl)- N-tosylanilides for the Synthesis of 4-Quinolones. J Org Chem 2020; 85:6420-6428. [PMID: 32315174 DOI: 10.1021/acs.joc.0c00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The treatment of easily accessible o-(1-hydroxy-2-alkynyl)-N-tosylanilides 1 with excess manganese(IV) oxide in the presence of substoichiometric tetrabutylammonium iodide (TBAI) in chloroform (or in the absence of TBAI in dimethylformamide, DMF) promoted a sequential oxidation/intramolecular hydroamination to give 4-quinolones 3 and/or (Z)-2-alkylidene-3-oxindoles (Z)-4 in good yields. Possibly, MnO2 played dual roles as an oxidant and as a Lewis acidic activator of intermediary ynones 2. The product distributions between 3 and (Z)-4 could be controlled by the choice of solvents.
Collapse
Affiliation(s)
- Jun-Ichi Ueda
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuuki Enomoto
- Department of Natural Science, Graduate School of Science and Technology and Research Cluster on "Innovative Chemical Sensing", Tokushima University, Tokushima 770-8506, Japan
| | - Mizuki Seki
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takuma Konishi
- Department of Natural Science, Graduate School of Science and Technology and Research Cluster on "Innovative Chemical Sensing", Tokushima University, Tokushima 770-8506, Japan
| | - Masamichi Ogasawara
- Department of Natural Science, Graduate School of Science and Technology and Research Cluster on "Innovative Chemical Sensing", Tokushima University, Tokushima 770-8506, Japan
| | - Kazuhiro Yoshida
- Department of Chemistry, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
17
|
Wang ZY, Wang KK, Chen R, Liu H, Chen K. Ynones in Reflex-Michael Addition, CuAAC, and Cycloaddition, as Well as their Use as Nucleophilic Enols, Electrophilic Ketones, and Allenic Precursors. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901921] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhan-Yong Wang
- College of Chemistry and Chemical Engineering; Xinxiang University; 453000 Xinxiang Henan P. R. of China
| | - Kai-Kai Wang
- College of Chemistry and Chemical Engineering; Xinxiang University; 453000 Xinxiang Henan P. R. of China
| | - Rongxiang Chen
- College of Chemistry and Chemical Engineering; Xinxiang University; 453000 Xinxiang Henan P. R. of China
| | - Huan Liu
- College of Chemistry and Chemical Engineering; Xinxiang University; 453000 Xinxiang Henan P. R. of China
| | - Kaijun Chen
- Department of Chemistry; Lishui University; No. 1, Xueyuan Road 323000 Lishui City Zhejiang Province P. R. China
| |
Collapse
|
18
|
Zhou N, Wu M, Zhang M, Zhou X, Zhou W. TBPB-initiated cascade cyclization of 3-arylethynyl-[1,1'-biphenyl]-2-carbonitriles with sulfinic acids: access to sulfone-containing cyclopenta[gh]phenanthridines. Org Biomol Chem 2020; 18:1733-1737. [PMID: 32048693 DOI: 10.1039/d0ob00119h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel TBPB-initiated cascade cyclization of 3-arylethynyl-[1,1'-biphenyl]-2-carbonitriles with sulfinic acids via C-S, C-C and C-N bond formation for the synthesis of 3-sulfonated cyclopenta[gh]phenanthridines under metal-free conditions has been developed. This protocol features mild conditions, good functional group tolerance and a broad substrate scope. By using this protocol, a variety of potentially bioactive 3-sulfonated cyclopenta[gh]phenanthridines were facilely synthesized via direct annulation.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Xiaoqiang Zhou
- College of chemistry and material, Weinan Normal University, Weinan 714099, Shaanxi province, China
| | - Wei Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
19
|
Ge J, Ding Q, Yang M, He T, Peng Y. Copper and manganese co-mediated cascade aza-Michael addition/cyclization and azidation of 1,3-enynes: regioselective synthesis of fully substituted azido pyrroles. Org Biomol Chem 2020; 18:8908-8915. [DOI: 10.1039/d0ob01927e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A Cu and Mn co-mediated aerobic oxidative cyclization and azidation reaction of 1,3-enynes with amines and trimethylsilyl azide has been developed to synthesize fully substituted azido pyrroles.
Collapse
Affiliation(s)
- Junying Ge
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Qiuping Ding
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Man Yang
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Tian He
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University
- Nanchang 330022
- China
| |
Collapse
|
20
|
Li D, Lei J. Thio radical-induced denitrogenative annulation of 1-azido-2-isocyanoarenes to construct 2-thiolated benzimidazoles. Org Biomol Chem 2019; 17:9666-9671. [PMID: 31691703 DOI: 10.1039/c9ob02165e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A method for the synthesis of 2-thiolated benzimidazoles is described starting from thiols and 1-azido-2-isocyanoarenes. The isocyano group works as an acceptor of various thio radicals, followed by denitrogenative annulation of the resulting imidoyl radical intermediates to the azido group, with nitrogen loss as the only process involving high bond-forming efficiency. The one-pot method for the synthesis of these products with high functional group tolerance in the benzimidazole-based ring is not available in previous literature.
Collapse
Affiliation(s)
- Dengke Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, Yunnan, China.
| | - Jian Lei
- College of Chemical Engineering and Material, Quanzhou Normal University, Quanzhou 362000, Fujian, China.
| |
Collapse
|
21
|
Liu J, Ba D, Lv W, Chen Y, Zhao Z, Cheng G. Base‐Promoted Michael Addition/Smiles Rearrangement/
N
‐Arylation Cascade: One‐Step Synthesis of 1,2,3‐Trisubstituted 4‐Quinolones from Ynones and Sulfonamides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Liu
- College of Materials Science & EngineeringHuaqiao University Xiamen 361021 People's Republic of China
| | - Dan Ba
- College of Materials Science & EngineeringHuaqiao University Xiamen 361021 People's Republic of China
| | - Weiwei Lv
- College of Materials Science & EngineeringHuaqiao University Xiamen 361021 People's Republic of China
| | - Yanhui Chen
- College of Materials Science & EngineeringHuaqiao University Xiamen 361021 People's Republic of China
| | - Zemin Zhao
- College of Materials Science & EngineeringHuaqiao University Xiamen 361021 People's Republic of China
| | - Guolin Cheng
- College of Materials Science & EngineeringHuaqiao University Xiamen 361021 People's Republic of China
| |
Collapse
|
22
|
Kise N, Yoshimura Y, Manto T, Sakurai T. Electroreductive Intermolecular Coupling of 4-Quinolones with Benzophenones: Synthesis of 2-Substituted 4-Quinolones. ACS OMEGA 2019; 4:20080-20093. [PMID: 31788643 PMCID: PMC6882170 DOI: 10.1021/acsomega.9b03342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 05/11/2023]
Abstract
The electroreductive coupling of 1-alkoxycarbonyl-4-quinolones with benzophenones in the presence of trimethylsilyl chloride gave adducts reacted at the 2-position of 4-quinolones as trimethylsilyl ethers. The adducts were transformed to 2-(diarylhydroxymethyl)-4-quinolones. The electroreduction of 1,3-diethoxycarbonyl-4-quinolones and polyhalogenated 3-alkoxycarbonyl-1-alkyl-4-quinolones with benzophenones also gave adducts reacted at the 2-position of 4-quinolones. On the contrary, the electroreductive coupling of 1,3-diethooxycarbonyl-8-methoxy-4-quinolones occurred at the 4-position of 4-quinolones to give 4-substituted quinolines.
Collapse
Affiliation(s)
- Naoki Kise
- Department of Chemistry and Biotechnology,
Graduate School of Engineering and Center for Research
on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
- E-mail:
| | - Yoshie Yoshimura
- Department of Chemistry and Biotechnology,
Graduate School of Engineering and Center for Research
on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Tatsuhiro Manto
- Department of Chemistry and Biotechnology,
Graduate School of Engineering and Center for Research
on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Toshihiko Sakurai
- Department of Chemistry and Biotechnology,
Graduate School of Engineering and Center for Research
on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| |
Collapse
|
23
|
Xu ZQ, Wang WB, Zheng LC, Li L, Duan L, Li YM. Iodine-mediated aminosulfonylation of alkenyl sulfonamides with sulfonyl hydrazides: synthesis of sulfonylmethyl piperidines, pyrrolidines and pyrazolines. Org Biomol Chem 2019; 17:9026-9038. [PMID: 31577324 DOI: 10.1039/c9ob01847f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aminosulfonylation of alkenyl sulfonamides was reported. Using iodine as the catalyst, TBHP as the oxidant, and sulfonyl hydrazides as the sulfonyl radical sources, a variety of sulfonylmethyl piperidines, pyrrolidines and pyrazolines were obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Zhong-Qi Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Wen-Bo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Lin-Chuang Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Lin Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Lili Duan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China. and CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
24
|
Ghosh P, Das S. Synthesis and Functionalization of 4-Quinolones - A Progressing Story. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry; University of North Bengal; 734013 Darjeeling West Bengal India
| | - Sajal Das
- Department of Chemistry; University of North Bengal; 734013 Darjeeling West Bengal India
| |
Collapse
|
25
|
Gore BS, Lee CC, Lee J, Wang J. Copper‐Catalyzed Synthesis of Substituted 4‐Quinolones using Water as a Benign Reaction Media: Application for the Construction of Oxolinic Acid and BQCA. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Babasaheb Sopan Gore
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Chein Chung Lee
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Jessica Lee
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
| | - Jeh‐Jeng Wang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Rd, Sanmin district Kaohsiung City 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Hospital No. 100, Tzyou 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
| |
Collapse
|
26
|
Shen C, Wang A, Xu J, An Z, Loh KY, Zhang P, Liu X. Recent Advances in the Catalytic Synthesis of 4-Quinolones. Chem 2019. [DOI: 10.1016/j.chempr.2019.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Lu L, Luo C, Peng H, Jiang H, Lei M, Yin B. Access to Polycyclic Sulfonyl Indolines via Fe(II)-Catalyzed or UV-Driven Formal [2 + 2 + 1] Cyclization Reactions of N-((1H-indol-3-yl)methyl)propiolamides with NaHSO3. Org Lett 2019; 21:2602-2605. [DOI: 10.1021/acs.orglett.9b00573] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lin Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Chenguang Luo
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Peng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| |
Collapse
|
28
|
Yang Q, Yang Z, Tan Y, Zhao J, Sun Q, Zhang H, Zhang Y. Direct C(
sp
2
)−H Amination to Synthesize Primary 3‐aminoquinoxalin‐2(1
H
)‐ones under Simple and Mild Conditions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801661] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qiming Yang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 People's Republic of China
| | - Zibing Yang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 People's Republic of China
| | - Yushi Tan
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 People's Republic of China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 People's Republic of China
| | - Qian Sun
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 People's Republic of China
| | - Hong‐Yu Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 People's Republic of China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 People's Republic of China
| |
Collapse
|
29
|
Xu J, Zhang F, Zhang S, Zhang L, Yu X, Yan J, Song Q. Radical Promoted C(sp2)–S Formation and C(sp3)–S Bond Cleavage: Access to 2-Substituted Thiochromones. Org Lett 2019; 21:1112-1115. [DOI: 10.1021/acs.orglett.9b00023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jian Xu
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Fan Zhang
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Shifan Zhang
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Li Zhang
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Xiaoxia Yu
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Jianxiang Yan
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
30
|
Liu Y, Tian Y, Su K, Wang P, Guo X, Chen B. Rhodium(iii)-catalyzed [3 + 3] annulation reactions of N-nitrosoanilines and cyclopropenones: an approach to functionalized 4-quinolones. Org Chem Front 2019. [DOI: 10.1039/c9qo01250h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report Rh(iii)-catalyzed [3 + 3] annulation reactions for the preparation of functionalized 4-quinolones from available N-nitrosoanilines and cyclopropenones.
Collapse
Affiliation(s)
- Yafeng Liu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Yuan Tian
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Kexin Su
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Peigen Wang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Xin Guo
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| |
Collapse
|
31
|
Zhang P, Shi S, Gao X, Han S, Lin J, Zhao Y. Photoredox-catalyzed cascade annulation of N-propargylindoles with sulfonyl chlorides: access to 2-sulfonated 9H-pyrrolo[1,2-a]indoles. Org Biomol Chem 2019; 17:2873-2876. [DOI: 10.1039/c9ob00218a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A photoredox-catalyzed cascade radical reaction of N-propargylindoles and sulfonyl chlorides to 2-sulfonated 9H-pyrrolo[1,2-a]indoles under external oxidant-free conditions was developed.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Public Health
- Xinxiang Medical University
- Xinxiang 453003
- China
| | - Shanshan Shi
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Xia Gao
- School of Public Health
- Xinxiang Medical University
- Xinxiang 453003
- China
| | - Shuang Han
- School of Public Health
- Xinxiang Medical University
- Xinxiang 453003
- China
| | - Jinming Lin
- School of Public Health
- Xinxiang Medical University
- Xinxiang 453003
- China
| | - Yufen Zhao
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|
32
|
Jiang SF, Xu C, Zhou ZW, Zhang Q, Wen XH, Jia FC, Wu AX. Switchable Access to 3-Carboxylate-4-quinolones and 1-Vinyl-3-carboxylate-4-quinolones via Oxidative Cyclization of Isatins and Alkynes. Org Lett 2018; 20:4231-4234. [DOI: 10.1021/acs.orglett.8b01645] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shi-Fen Jiang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Cheng Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Wen Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qin Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Hui Wen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Feng-Cheng Jia
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
33
|
Qi Z, Jiang Y, Wang Y, Yan R. tert-Butyl Nitrite Promoted Oxidative Intermolecular Sulfonamination of Alkynes to Synthesize Substituted Sulfonyl Pyrroles from the Alkynylamines and Sulfinic Acids. J Org Chem 2018; 83:8636-8644. [DOI: 10.1021/acs.joc.8b00741] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhenjie Qi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 400000 China
| | - Yanyan Wang
- Jinchuan Advanced Materials Technology Co., Ltd. Lanzhou, 730000, Gansu China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu China
| |
Collapse
|
34
|
Sulfur Radicals and Their Application. Top Curr Chem (Cham) 2018; 376:22. [DOI: 10.1007/s41061-018-0197-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
|
35
|
Ji X, Li D, Wang Z, Tan M, Huang H, Deng GJ. Visible Light-Induced Aerobic Oxidation of Indoles: One-Pot Formation of 4-Quinolones at Room Temperature. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Dongdong Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Zhongzhen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Muyun Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 China
| |
Collapse
|
36
|
Huang MH, Hao WJ, Li G, Tu SJ, Jiang B. Recent advances in radical transformations of internal alkynes. Chem Commun (Camb) 2018; 54:10791-10811. [DOI: 10.1039/c8cc04618b] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review highlights the recent progress in the radical transformation of internal alkynes and focuses on the reaction mechanisms by carbon/heteroatom-centered triggered additions, and offers a comprehensive overview on the existing procedures and employed methodologies.
Collapse
Affiliation(s)
- Min-Hua Huang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Guigen Li
- Institute of Chemistry & BioMedical Sciences
- Nanjing University
- Nanjing 210093
- P. R. China
- Department of Chemistry and Biochemistry
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
37
|
Zhu J, Yang WC, Wang XD, Wu L. Photoredox Catalysis in C-S Bond Construction: Recent Progress in Photo-Catalyzed Formation of Sulfones and Sulfoxides. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701194] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences; Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Wen-Chao Yang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences; Nanjing Agricultural University; Nanjing 210095 People's Republic of China
- College of Plant Protection; Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Xiao-dong Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences; Nanjing Agricultural University; Nanjing 210095 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences; Nanjing Agricultural University; Nanjing 210095 People's Republic of China
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| |
Collapse
|
38
|
Xu J, Yu X, Yan J, Song Q. Synthesis of 3-(Arylsulfonyl)benzothiophenes and Benzoselenophenes via TBHP-Initiated Radical Cyclization of 2-Alkynylthioanisoles or -selenoanisoles with Sulfinic Acids. Org Lett 2017; 19:6292-6295. [DOI: 10.1021/acs.orglett.7b02971] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jian Xu
- Institute of Next Generation Matter Transformation,
College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Xiaoxia Yu
- Institute of Next Generation Matter Transformation,
College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Jianxiang Yan
- Institute of Next Generation Matter Transformation,
College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation,
College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
39
|
Li D, Mao T, Huang J, Zhu Q. Denitrogenative Imidoyl Radical Cyclization: Synthesis of 2-Substituted Benzoimidazoles from 1-Azido-2-isocyanoarenes. Org Lett 2017; 19:3223-3226. [DOI: 10.1021/acs.orglett.7b01339] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dengke Li
- State Key Laboratory of Respiratory
Disease, Guangzhou Institutes of Biomedicine and Health, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Tingting Mao
- State Key Laboratory of Respiratory
Disease, Guangzhou Institutes of Biomedicine and Health, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jinbo Huang
- State Key Laboratory of Respiratory
Disease, Guangzhou Institutes of Biomedicine and Health, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory
Disease, Guangzhou Institutes of Biomedicine and Health, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| |
Collapse
|