1
|
Sterligov G, Ageshina AA, Rzhevskiy SA, Shurupova OV, Topchiy MA, Minaeva LI, Asachenko AF. One-Pot Modified Madelung Synthesis of 3-Tosyl- and 3-Cyano-1,2-disubstituted Indoles. ACS OMEGA 2022; 7:38505-38511. [PMID: 36340104 PMCID: PMC9631411 DOI: 10.1021/acsomega.2c03754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
A One-pot, two-step procedure for the synthesis of 1,2-disubstituted-3-tosyl and 1,2-disubstituted-3-cyanoindoles from the corresponding N-(o-tolyl)benzamides is reported. The developed procedure is operationally simple, does not utilize any transition metals, and provides variably substituted indoles in good yields from readily available starting materials.
Collapse
|
2
|
Kostromitin VS, Zemtsov AA, Levin VV, Dilman AD. Photocatalytic Atom‐Transfer Radical Addition of Activated Chlorides to Alkenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vladislav S. Kostromitin
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
- Lomonosov Moscow State University Department of Chemistry 119991 Moscow Leninskie Gory 1–3 Russian Federation
| | - Artem A. Zemtsov
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Leninsky prosp. 47 Russian Federation
| |
Collapse
|
3
|
Sarkar D, Amin A, Qadir T, Sharma PK. Synthesis of Medicinally Important Indole Derivatives: A Review. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2021. [DOI: 10.2174/1874104502015010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Indoles constitute a widely occurring functional group in nature and are present in an extensive number of bioactive natural products and medicinally important compounds. As a result, exponential increases in the development of novel methods for the formation of indole core along with site-specific indoles have been established. Conventional methods for the synthesis of indoles are getting replaced with green methods involving ionic liquids, water as a solvent, solid acid catalyst, microwave irradiation and the use of nanoparticles under solvent-free conditions. In addition, there are immense applications of the substituted indoles in diverse fields.
Collapse
|
4
|
Correia JTM, Santos MS, Pissinati EF, da Silva GP, Paixão MW. Recent Advances on Photoinduced Cascade Strategies for the Synthesis of N-Heterocycles. CHEM REC 2021; 21:2666-2687. [PMID: 34288377 DOI: 10.1002/tcr.202100160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
Over the last decade, visible-light photocatalysis has proved to be a powerful tool for the construction of N-heterocyclic frameworks, important constituents of natural products, insecticides, pharmacologically relevant therapeutic agents and catalysts. This account highlights recent developments and established methods towards the photocatalytic cascades for preparation of different classes of N-heterocycles, giving emphasis on our contribution to the field.
Collapse
Affiliation(s)
- José Tiago M Correia
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Marilia S Santos
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Emanuele F Pissinati
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Gustavo P da Silva
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Márcio W Paixão
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| |
Collapse
|
5
|
Levin VV, Dilman AD. Alkene homologation via visible light promoted hydrophosphination using triphenylphosphonium triflate. Chem Commun (Camb) 2021; 57:749-752. [PMID: 33346287 DOI: 10.1039/d0cc07025d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrophosphination reaction of alkenes with triphenylphosphonium triflate under photocatalytic conditions is described. The reaction is promoted by naphthalene-fused N-acylbenzimidazole and is believed to proceed through intermediate formation of a phosphinyl radical cation. The resulting phosphonium salts are directly involved in the Wittig reaction leading to homologated alkenes.
Collapse
Affiliation(s)
- Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Leninsky prosp. 47, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
6
|
Zheng L, Tao K, Guo W. Recent Developments in Photo‐Catalyzed/Promoted Synthesis of Indoles and Their Functionalization: Reactions and Mechanisms. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| |
Collapse
|
7
|
Abstract
The synthesis of substituted indoles has received great attention in the field of organic synthesis methodology. C–H activation makes it possible to obtain a variety of designed indole derivatives in mild conditions. Ruthenium catalyst, as one of the most significant transition-metal catalysts, has been contributing in the synthesis of indole scaffolds through C–H activation and C–H activation on indoles. Herein, we attempt to present an overview about the construction strategies of indole scaffold and site-specific modifications for indole scaffold via ruthenium-catalyzed C–H activations in recent years.
Collapse
|
8
|
Jain A, Ameta C. Novel Way to Harness Solar Energy: Photo-Redox Catalysis in Organic Synthesis. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s002315842002007x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Trifonov AL, Panferova LI, Levin VV, Kokorekin VA, Dilman AD. Visible-Light-Promoted Iododifluoromethylation of Alkenes via (Phosphonio)difluoromethyl Radical Cation. Org Lett 2020; 22:2409-2413. [DOI: 10.1021/acs.orglett.0c00604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alexey L. Trifonov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
- D. Mendeleev University of Chemical Technology of Russia, Higher Chemical College, Miusskaya sq. 9, 125047 Moscow, Russian Federation
| | - Liubov I. Panferova
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vladimir A. Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
10
|
Supranovich VI, Chernov GN, Levin VV, Dilman AD. Photoredox Fluoroalkylation of Arylidene and Alkylidene Amidrazones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Grigory N. Chernov
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russian Federation
- Department of Chemistry; Moscow State University; Leninskie Gory 1-3 119991 Moscow Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
11
|
Zubkov MO, Kosobokov MD, Levin VV, Kokorekin VA, Korlyukov AA, Hu J, Dilman AD. A novel photoredox-active group for the generation of fluorinated radicals from difluorostyrenes. Chem Sci 2019; 11:737-741. [PMID: 34123046 PMCID: PMC8146146 DOI: 10.1039/c9sc04643g] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A 4-tetrafluoropyridinylthio group was suggested as a new photoredox-active moiety. The group can be directly installed on difluorostyrenes in a single step by the thiolene click reaction. It proceeds upon visible light catalysis with 9-phenylacridine providing various difluorinated sulfides as radical precursors. Single electron reduction of the C–S bond with the formation of fluoroalkyl radicals is enabled by the electron-poor azine ring. The intermediate difluorinated sulfides were involved in a series of photoredox reactions with silyl enol ethers, alkenes, nitrones and an alkenyl trifluoroborate. A new photoredox-active group was applied for the generation of fluorinated radicals from difluorostyrenes under blue light irradiation.![]()
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia .,Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia 9 Miusskaya sq. 125047 Moscow Russia
| | - Mikhail D Kosobokov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia
| | - Vladimir A Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia .,I. M. Sechenov First Moscow State Medical University 8-2 Trubetskaya st. 119991 Moscow Russia
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences 28 Vavilova st. 119991 Moscow Russia.,Pirogov Russian National Research Medical University 1 Ostrovitianov st. 117997 Moscow Russia
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Ling-Ling Road 200032 Shanghai China
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia
| |
Collapse
|
12
|
Zemtsov AA, Ashirbaev SS, Levin VV, Kokorekin VA, Korlyukov AA, Dilman AD. Photoredox Reaction of 2-Mercaptothiazolinium Salts with Silyl Enol Ethers. J Org Chem 2019; 84:15745-15753. [PMID: 31693367 DOI: 10.1021/acs.joc.9b02478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A method for the generation of free radicals from thiazolinium salts upon photocatalytic reduction is described. The thiazolinium salts are generated by treatment with methyl triflate of 2-mercaptothiazolines, which can be readily obtained from alkyl bromides and tosylates via a nucleophilic substitution reaction or by hydrothiolation of alkenes. Silyl enol ethers were used to trap the radicals, furnishing ketones after successive single-electron oxidation and elimination of the silyl cation.
Collapse
Affiliation(s)
- Artem A Zemtsov
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky prosp. 47 , 119991 Moscow , Russian Federation
| | - Salavat S Ashirbaev
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky prosp. 47 , 119991 Moscow , Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky prosp. 47 , 119991 Moscow , Russian Federation
| | - Vladimir A Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky prosp. 47 , 119991 Moscow , Russian Federation.,Sechenov First Moscow State Medical University , Trubetskaya st. 8-2 , 119991 Moscow , Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds , Vavilov str. 28 , 119991 Moscow , Russian Federation.,N. I. Pirogov Russian National Research Medical University , Ostrovitianov str. 1 , 117997 Moscow , Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky prosp. 47 , 119991 Moscow , Russian Federation
| |
Collapse
|
13
|
Huang HY, Li H, Roisnel T, Soulé JF, Doucet H. Regioselective Pd-catalyzed direct C1- and C2-arylations of lilolidine for the access to 5,6-dihydropyrrolo[3,2,1- ij]quinoline derivatives. Beilstein J Org Chem 2019; 15:2069-2075. [PMID: 31501675 PMCID: PMC6719733 DOI: 10.3762/bjoc.15.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/14/2019] [Indexed: 01/15/2023] Open
Abstract
The Pd-catalyzed C–H bond functionalization of lilolidine was investigated. The use of a palladium-diphosphine catalyst associated to acetate bases in DMA was found to promote the regioselective arylation at α-position of the nitrogen atom of lilolidine with a wide variety of aryl bromides. From these α-arylated lilolidines, a second arylation at the β-position gives the access to α,β-diarylated lilolidines containing two different aryl groups. The one pot access to α,β-diarylated lilolidines with two identical aryl groups is also possible by using a larger amount of aryl bromide. The synthesis of 5,6-dihydrodibenzo[a,c]pyrido[3,2,1-jk]carbazoles from lilolidine via three successive direct arylations is also described. Therefore, this methodology provides a straightforward access to several lilolidine derivatives from commercially available compounds via one, two or three C–H bond functionalization steps allowing to tune their biological properties.
Collapse
Affiliation(s)
- Hai-Yun Huang
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Haoran Li
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | | | | | - Henri Doucet
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
14
|
Bora PP, Bihani M, Plummer S, Gallou F, Handa S. Shielding Effect of Micelle for Highly Effective and Selective Monofluorination of Indoles in Water. CHEMSUSCHEM 2019; 12:3037-3042. [PMID: 30834700 DOI: 10.1002/cssc.201900316] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Indexed: 05/12/2023]
Abstract
Highly selective direct monofluorination of indoles and arenes was developed through an approach that allows site-specific solubility of substrate and fluorine source in the micelle. This approach was highly selective for a broad range of substrates with excellent functional group tolerance. Differences in binding constant and solubility of indoles and arenes in the micelle allowed the fine-tuning of selectivity. Control experiments suggested a radical pathway and provided insight into the role of micelles of the environmentally benign amphiphile PS-750-M. Dynamic light scattering experiments strongly indicated the site-specific solubility of the substrate and fluorine source. The methodology was successfully adapted to gram scale, and the E-factor established from a recycle study indicated that the process is environmentally responsible and sustainable.
Collapse
Affiliation(s)
- Pranjal P Bora
- Department of Chemistry, University of Louisville, 2320 S. Brook St., Louisville, KY, 40292, USA
| | - Manisha Bihani
- Department of Chemistry, University of Louisville, 2320 S. Brook St., Louisville, KY, 40292, USA
| | - Scott Plummer
- Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | | | - Sachin Handa
- Department of Chemistry, University of Louisville, 2320 S. Brook St., Louisville, KY, 40292, USA
| |
Collapse
|
15
|
Borodkin GI, Shubin VG. Progress and prospects in the use of photocatalysis for the synthesis of organofluorine compounds. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Data on the synthesis of fluorinated organic compounds by photocatalysis are systematically considered and analyzed. The attention is focused on the mechanisms of photocatalytic reactions and the selectivity problem.
The bibliography includes 173 references.
Collapse
|
16
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Synthesis of indoles: recent advances. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4844] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Panferova LI, Chernov GN, Levin VV, Kokorekin VA, Dilman AD. Photoredox mediated annelation of iododifluoromethylated alcohols with 1,1-diarylethylenes. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Dmitriev IA, Supranovich VI, Levin VV, Struchkova MI, Dilman AD. Visible Light Promoted 2-Bromotetrafluoroethylation of Nitrones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Igor A. Dmitriev
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
- Moscow State University; Department of Chemistry; 119991 Moscow Leninskie Gory 1-3 Russian Federation
| | | | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Marina I. Struchkova
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
| |
Collapse
|
19
|
Nosova EV, Lipunova GN, Charushin VN, Chupakhin ON. Fluorine-containing indoles: Synthesis and biological activity. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Supranovich VI, Levin VV, Struchkova MI, Hu J, Dilman AD. Visible light-mediated difluoroalkylation of electron-deficient alkenes. Beilstein J Org Chem 2018; 14:1637-1641. [PMID: 30013689 PMCID: PMC6036985 DOI: 10.3762/bjoc.14.139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
A method for the reductive difluoroalkylation of electron-deficient alkenes using 1,1-difluorinated iodides mediated by irradiation with blue light is described. The reaction involves radical addition of 1,1-difluorinated radicals at the double bond followed by hydrogen atom transfer from sodium cyanoborohydride.
Collapse
Affiliation(s)
- Vyacheslav I Supranovich
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Marina I Struchkova
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| |
Collapse
|
21
|
Dilman AD, Levin VV. Difluorocarbene as a Building Block for Consecutive Bond-Forming Reactions. Acc Chem Res 2018; 51:1272-1280. [PMID: 29664601 DOI: 10.1021/acs.accounts.8b00079] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compounds containing a difluoromethylene unit have gained increasing attention due to their utility in drug design. Classic methods for the synthesis of these compounds rely on either harsh deoxofluorination reactions or laborious functional group manipulation sequences. In 2013, we proposed a method for assembling gem-difluorinated molecules from a difluorocarbene, a nucleophile, and an electrophile. In this process, a difluorocarbene can be considered an equivalent of a bipolar CF2 unit. Performing consecutive bond-forming reactions by sequential attachment of a nucleophile and an electrophile to a difluorocarbene provides the opportunity for the synthesis of a wide variety of organofluorine compounds. Silicon reagents were the most effective sources of the difluoromethylene fragment, and among them (bromodifluoromethyl)trimethylsilane (Me3SiCF2Br) is the reagent of choice. Mildly basic activators such HMPA, DMPU, bromide and acetate ions can initiate the decomposition of the silane with concomitant generation of a difluorocarbene. Organozinc reagents can be employed as nucleophiles, and the CF2 fragment can insert into the carbon-zinc bond. Primary and secondary benzyl and alkyl organozinc compounds work well. Generally, organozinc reagents tolerate a variety of functional groups. The resulting fluorinated organozinc species can be coupled with heteroatom- or carbon-centered electrophiles. Halogenation of the carbon-zinc bond leads to compounds with bromo- or iododifluoromethyl fragments, which are difficult to access by other means, whereas protonation of that bond generates a valuable difluoromethyl group. Despite the decrease in the reactivity of the carbon-zinc bond caused by the adjacent fluorines, organozinc compounds can effectively participate in copper-catalyzed cross-couplings with allylic and propargyl halides, 1-bromoalkynes, and S-acyl dithiocarbamates. Difluorocarbene can be inserted into the carbon-silicon bond of trimethylsilyl cyanide, and the resulting silane can react with aldehydes and imines to furnish difluorinated nitriles. Interactions of difluorocarbene with heteroatom nucleophiles, such as phosphines or halide ions, are reversible, but the adduct can be trapped by an electrophile. The use of halide ions allows the direct nucleophilic bromo- and iododifluoromethylation of aldehydes and iminium ions. The combination of triphenylphosphine with difluorocarbene generates a difluorinated phosphorus ylide, which can interact with a wide range of π-electrophiles (aldehydes, ketones, acyl chlorides, azomethines, and Michael acceptors) to provide gem-difluorinated phosphonium salts. In the latter species, the carbon-phosphorus bond can be readily cleaved under basic conditions, affording the difluoromethylation products. Primary products resulting from three-component couplings can subsequently be used for further transformations. Single-electron reduction of carbon-phosphorus or carbon-iodine bonds can be conducted under photocatalytic conditions to generate gem-difluorinated radicals. These radicals can be trapped by silyl enol ethers leading to β,β-difluorinated ketones as the primary products. Fluorinated radicals can also undergo intramolecular attacks adjacent to an aromatic ring or a double bond.
Collapse
Affiliation(s)
- Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
22
|
|
23
|
Smirnov VO, Maslov AS, Kokorekin VA, Korlyukov AA, Dilman AD. Photoredox generation of the trifluoromethyl radical from borate complexes via single electron reduction. Chem Commun (Camb) 2018; 54:2236-2239. [DOI: 10.1039/c8cc00245b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A trifluoromethyl radical is generated by single electron reduction of CF3-substituted borate complexes.
Collapse
Affiliation(s)
- Vladimir O. Smirnov
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| | - Anton S. Maslov
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
- Department of Chemistry
- Lomonosov Moscow State University
| | - Vladimir A. Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
- I. M. Sechenov First Moscow State Medical University
- 119991 Moscow
| | - Alexander A. Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds
- 119991 Moscow
- Russian Federation
- N. I. Pirogov Russian National Research Medical University
- 117997 Moscow
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry
- 119991 Moscow
- Russian Federation
| |
Collapse
|
24
|
Scherbinina SI, Fedorov OV, Levin VV, Kokorekin VA, Struchkova MI, Dilman AD. Synthesis of 3-Fluoropyridines via Photoredox-Mediated Coupling of α,α-Difluoro-β-iodoketones with Silyl Enol Ethers. J Org Chem 2017; 82:12967-12974. [DOI: 10.1021/acs.joc.7b02467] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sofya I. Scherbinina
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
- D. Mendeleev University of Chemical Technology of Russia, Higher Chemical College, Miusskaya sq.
9, 125047 Moscow, Russian Federation
| | - Oleg V. Fedorov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vladimir A. Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
- I. M. Sechenov First Moscow State Medical University, Trubetskaya st. 8-2, 119991 Moscow, Russian Federation
| | - Marina I. Struchkova
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
25
|
Ananikov VP, Eremin DB, Yakukhnov SA, Dilman AD, Levin VV, Egorov MP, Karlov SS, Kustov LM, Tarasov AL, Greish AA, Shesterkina AA, Sakharov AM, Nysenko ZN, Sheremetev AB, Stakheev AY, Mashkovsky IS, Sukhorukov AY, Ioffe SL, Terent’ev AO, Vil’ VA, Tomilov YV, Novikov RA, Zlotin SG, Kucherenko AS, Ustyuzhanina NE, Krylov VB, Tsvetkov YE, Gening ML, Nifantiev NE. Organic and hybrid systems: from science to practice. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Chernov GN, Levin VV, Kokorekin VA, Struchkova MI, Dilman AD. Interaction of gem
-Difluorinated Iodides with Silyl Enol Ethers Mediated by Photoredox Catalysis. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700423] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Grigory N. Chernov
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
- Moscow State University; Department of Chemistry; 119991 Moscow Leninskie Gory 1-3 Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Vladimir A. Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
- I. M. Sechenov First Moscow State Medical University; 119991 Moscow Trubetskaya st. 8-2 Russian Federation
| | - Marina I. Struchkova
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry; 119991 Moscow Leninsky prosp. 47 Russian Federation
| |
Collapse
|
27
|
Supranovich VI, Levin VV, Struchkova MI, Korlyukov AA, Dilman AD. Radical Silyldifluoromethylation of Electron-Deficient Alkenes. Org Lett 2017; 19:3215-3218. [DOI: 10.1021/acs.orglett.7b01334] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vyacheslav I. Supranovich
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Marina I. Struchkova
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander A. Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Vavilov str. 28, 119991 Moscow, Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|