1
|
Borah B, Chowhan LR. Recent advances in the transition-metal-free synthesis of quinoxalines. RSC Adv 2021; 11:37325-37353. [PMID: 35496411 PMCID: PMC9043781 DOI: 10.1039/d1ra06942j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/30/2021] [Indexed: 01/04/2023] Open
Abstract
Quinoxalines, also known as benzo[a]pyrazines, constitute an important class of nitrogen-containing heterocyclic compounds as a result of their widespread prevalence in natural products, biologically active synthetic drug candidates, and optoelectronic materials. Owing to their importance and chemists' ever-increasing imagination of new transformations of these products, tremendous efforts have been dedicated to finding more efficient approaches toward the synthesis of quinoxaline rings. The last decades have witnessed a marvellous outburst in modifying organic synthetic methods to create them sustainable for the betterment of our environment. The exploitation of transition-metal-free catalysis in organic synthesis leads to a new frontier to access biologically active heterocycles and provides an alternative method from the perspective of green and sustainable chemistry. Despite notable developments achieved in transition-metal catalyzed synthesis, the high cost involved in the preparation of the catalyst, toxicity, and difficulty in removing it from the final products constitute disadvantageous effects on the atom economy and eco-friendly nature of the transformation. In this review article, we have summarized the recent progress achieved in the synthesis of quinoxalines under transition-metal-free conditions and cover the reports from 2015 to date. This aspect is presented alongside the mechanistic rationalization and limitations of the reaction methodologies. The scopes of future developments are also highlighted.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
2
|
Chen NY, Lu K, Yuan JM, Li XJ, Gu ZY, Pan CX, Mo DL, Su GF. 3-Arylamino-quinoxaline-2-carboxamides inhibit the PI3K/Akt/mTOR signaling pathways to activate P53 and induce apoptosis. Bioorg Chem 2021; 114:105101. [PMID: 34175723 DOI: 10.1016/j.bioorg.2021.105101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/10/2021] [Accepted: 06/15/2021] [Indexed: 01/10/2023]
Abstract
Thirty-eight new 3-arylaminoquinoxaline-2-carboxamide derivatives were in silico designed, synthesized and their cytotoxicity against five human cancer cell lines and one normal cells WI-38 were evaluated. Molecular mechanism studies indicated that N-(3-Aminopropyl)-3-(4-chlorophenyl) amino-quinoxaline-2-carboxamide (6be), the compound with the most potent anti-proliferation can inhibit the PI3K-Akt-mTOR pathway via down regulating the levels of PI3K, Akt, p-Akt, p-mTOR and simultaneously inhibit the phosphorylation of Thr308 and Ser473 residues in Akt kinase to servers as a dual inhibitor. Further investigation revealed that 6be activate the P53 signal pathway, modulated the downstream target gene of Akt kinase such p21, p27, Bax and Bcl-2, caused the fluctuation of intracellular ROS, Ca2+ and mitochondrial membrane potential to induce cell cycle arrest and apoptosis in MGC-803 cells. 6be also display moderate anti-tumor activity in vivo while displaying no obvious adverse signs during the drug administration. The results suggest that 3-arylaminoquinoxaline-2-carboxamide derivatives might server as new scaffold for development of PI3K-Akt-mTOR inhibitor.
Collapse
Affiliation(s)
- Nan-Ying Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Ke Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Jing-Mei Yuan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Xiao-Juan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Zi-Yu Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
3
|
Bi HY, Du M, Pan CX, Xiao Y, Su GF, Mo DL. Nickel(II)-Catalyzed [5 + 1] Annulation of 2-Carbonyl-1-propargylindoles with Hydroxylamine To Synthesize Pyrazino[1,2- a]indole-2-oxides in Water. J Org Chem 2019; 84:9859-9868. [PMID: 31347845 DOI: 10.1021/acs.joc.9b00784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An atom-economical and practical method for the efficient synthesis of various pyrazino[1,2-a]indole-2-oxides was developed through a nickel(II)-catalyzed [5 + 1] annulation of 2-carbonyl-1-propargylindoles with hydroxylamine in water without using an organic solvent. The reaction involved an initial condensation of 2-carbonyl-1-propargylindoles with hydroxylamine to afford oxime intermediates, which then underwent a nickel(II)-catalyzed 6-exo-dig cyclization. Preliminary studies showed that (n-Bu)4NI served as a phase transfer catalyst and promoted the formation of active nickel(II) species. More importantly, the nickel(II) salt and phase transfer catalyst-in-water could be recycled seven times, and a gram scalable product was easily obtained in good yields through a filtration and washing protocol.
Collapse
Affiliation(s)
- Hong-Yan Bi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Min Du
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Yuhong Xiao
- School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan 411201 , P. R. China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| |
Collapse
|
4
|
Waheed M, Ahmed N, Alsharif MA, Alahmdi MI, Mukhtar S. K
2
S
2
O
8
‐Mediated Efficient Oxidative Deoximation of Flavonoid Oximes under Mild Reaction Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201901554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mohd Waheed
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee India
| | - Naseem Ahmed
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee India
| | - Meshari A Alsharif
- Department of ChemistryFaculty of Science, University of Tabuk, Tabuk- 71491 Saudi Arabia
| | - Mohammed Issa Alahmdi
- Department of ChemistryFaculty of Science, University of Tabuk, Tabuk- 71491 Saudi Arabia
| | - Sayeed Mukhtar
- Department of ChemistryFaculty of Science, University of Tabuk, Tabuk- 71491 Saudi Arabia
| |
Collapse
|
5
|
Keivanloo A, Abbaspour S, Bakherad M, Notash B. New Pd-Mediated Cascade Reactions for Synthesis of Novel Functionalized 1,3-Oxazole-Linked Quinoxaline Amines. ChemistrySelect 2019. [DOI: 10.1002/slct.201803653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ali Keivanloo
- Faculty of Chemistry; Shahrood University of Technology; Shahrood 36199-95161 Iran
| | - Sima Abbaspour
- Faculty of Chemistry; Shahrood University of Technology; Shahrood 36199-95161 Iran
| | - Mohammad Bakherad
- Faculty of Chemistry; Shahrood University of Technology; Shahrood 36199-95161 Iran
| | - Behrouz Notash
- Department of Inorganic Chemistry and Catalysis; Shahid Beheshti University, General Campus, Evin; Tehran 1983963113 Iran
| |
Collapse
|
6
|
Shinde SV, Talukdar P. Transmembrane H+/Cl− cotransport activity of bis(amido)imidazole receptors. Org Biomol Chem 2019; 17:4483-4490. [DOI: 10.1039/c9ob00554d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bis(amide) appended imidazole having a sickle-shaped trivalent hydrogen-bonding structure reported as a transmembrane H+/Cl− symporter.
Collapse
Affiliation(s)
- Sopan Valiba Shinde
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Pinaki Talukdar
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| |
Collapse
|
7
|
Jiao YX, Wei LS, Zhao CY, Wei K, Mo DL, Pan CX, Su GF. Isobutyl Nitrite-Mediated Synthesis of Quinoxalines through Double C−H Bond Amination of N
-Aryl Enamines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yan-Xiao Jiao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Lin-Su Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Chun-Yang Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Kai Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; Ministry of Science and Technology of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004, People's Republic of China
| |
Collapse
|
8
|
Chen W, Zhao C, Deng X. Synthesis of deuterium-labeled 2-quinoxalinecarboxylic acid and 3-methylquinoxaline-2-carboxylic acid from deuterium aniline. J Labelled Comp Radiopharm 2018; 61:1043-1047. [PMID: 30132955 DOI: 10.1002/jlcr.3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/12/2018] [Accepted: 08/10/2018] [Indexed: 11/07/2022]
Abstract
An efficient and simple synthetic route of deuterium-labeled 2-quinoxalinecarboxylic acid-d4 (QCA-d4 ) and 3-methylquinoxaline-2-carboxylic acid-d4 (MQCA-d4 ) is presented with 99.9% and 99.6% isotopic enrichment using aniline-d5 as labeled starting material. Their chemical structures were confirmed by 1 H NMR, and their isotopic abundance was determined by mass spectrometry analysis.
Collapse
Affiliation(s)
- Wulian Chen
- Research and Development Ccenter, Anpel Laboratory Technologies (Shanghai) Inc, Shanghai, China
| | - Chaomin Zhao
- Animal and Plant and Food Inspection and Quarantine Technical Center, Shanghai Exit and Entry Inspection and Quarantine Bureau, Shanghai, China
| | - Xiaojun Deng
- Animal and Plant and Food Inspection and Quarantine Technical Center, Shanghai Exit and Entry Inspection and Quarantine Bureau, Shanghai, China
| |
Collapse
|
9
|
|
10
|
Kumar Y, Jaiswal Y, Kumar A. Two-Step One-Pot Synthesis of Unsymmetrical (Hetero)Aryl 1,2-Diketones by Addition-Oxygenation of Potassium Aryltrifluoroborates to (Hetero)Arylacetonitriles. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yogesh Kumar
- Department of Chemistry; Indian Institute of Technology Patna; 801103 Bihta Bihar India
| | - Yogesh Jaiswal
- Department of Chemistry; Indian Institute of Technology Patna; 801103 Bihta Bihar India
| | - Amit Kumar
- Department of Chemistry; Indian Institute of Technology Patna; 801103 Bihta Bihar India
| |
Collapse
|