1
|
Arai S, Inagaki S, Nakajima M, Nishida A. Regio-divergent nickel catalysis: intramolecular [4+2] and [2+2] cycloaddition reactions between vinylallenes and alkynes. Chem Commun (Camb) 2021; 57:11268-11271. [PMID: 34635883 DOI: 10.1039/d1cc03942c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vinylallenes have been recognized as versatile C2 and C4 components for nickel-catalyzed intramolecular [4+2] and [2+2] cycloadditions. The former reaction was promoted by a Ni(0) complex (up to quantitative yield), and a Ni(II) salt was a key species for the latter reaction to give the corresponding regio- and stereocontrolled cycloadducts (up to 88% yield). DFT studies revealed that both reaction pathways involve a concerted mechanism through the activation of different C-C multiple bonds in the substrates.
Collapse
Affiliation(s)
- Shigeru Arai
- Graduate School of Pharmaceutical Sciences, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan. .,Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Saki Inagaki
- Graduate School of Pharmaceutical Sciences, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| | - Masaya Nakajima
- Graduate School of Pharmaceutical Sciences, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan. .,Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Atsushi Nishida
- Graduate School of Pharmaceutical Sciences, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan. .,Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
2
|
Cui Q, Tian ZY, Yu ZX. Rhodium(I)-Catalyzed Three-Component [4+2+1] Cycloaddition of Two Vinylallenes and CO. Chemistry 2021; 27:5638-5641. [PMID: 33377219 DOI: 10.1002/chem.202005443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Transition metal-catalyzed [4+2+1] reactions of dienes (or diene derivatives such as vinylallenes), alkynes/alkenes, and CO (or carbenes) are expected to be the most straightforward approach to synthesize challenging seven-membered ring compounds, but so far only limited successes have been realized. Here, an unexpected three-component [4+2+1] reaction between two vinylallenes and CO was discovered to give highly functionalized tropone derivatives under mild conditions, where one vinylallene acts as a C4 synthon, the other vinylallene as a C2 synthon, and CO as a C1 synthon. It was proposed that this reaction occurred via oxidative cyclization of the diene part of one vinylallene molecule, followed by insertion of the terminal alkene part of the allene moiety in another vinylallene, into the Rh-C bond of five-membered rhodacycle. Then, CO insertion and reductive elimination gave the [4+2+1] cycloadduct. Further experimental exploration of why ene/yne-vinylallenes and CO gave monocyclic tropone derivatives instead of 6/7-bicyclic ring products were reported here.
Collapse
Affiliation(s)
- Qi Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Zi-You Tian
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
3
|
Chintawar CC, Yadav AK, Kumar A, Sancheti SP, Patil NT. Divergent Gold Catalysis: Unlocking Molecular Diversity through Catalyst Control. Chem Rev 2021; 121:8478-8558. [PMID: 33555193 DOI: 10.1021/acs.chemrev.0c00903] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The catalyst-directed divergent synthesis, commonly termed as "divergent catalysis", has emerged as a promising technique as it allows chartering of structurally distinct products from common substrates simply by modulating the catalyst system. In this regard, gold complexes emerged as powerful catalysts as they offer unique reactivity profiles as compared to various other transition metal catalysts, primarily due to their salient electronic and geometrical features. Owing to the tunable soft π-acidic nature, gold catalysts not only evolved as superior contenders for catalyzing the reactions of alkynes, alkenes, and allenes but also, more intriguingly, have been found to provide divergent reaction pathways over other π-acid catalysts such as Ag, Pt, Pd, Rh, Cu, In, Sc, Hg, Zn, etc. The recent past has witnessed a renaissance in such examples wherein, by choosing gold catalysts over other transition metal catalysts or by fine-tuning the ligands, counteranions or oxidation states of the gold catalyst itself, a complete reactivity switch was observed. However, reviews documenting such examples are sporadic; as a result, most of the reports of this kind remained scattered in the literature, thereby hampering further development of this burgeoning field. By conceptualizing the idea of "Divergent Gold Catalysis (DGC)", this review aims to consolidate all such reports and provide a unified approach necessary to pave the way for further advancement of this exciting area. Based on the factors governing the divergence in product formation, an explicit classification of DGC has been provided. To gain a fundamental understanding of the divergence in observed reactivities and selectivities, the review is accompanied by mechanistic insights at appropriate places.
Collapse
Affiliation(s)
- Chetan C Chintawar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Amit K Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Shashank P Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
4
|
Gujjarappa R, Vodnala N, Malakar CC. Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| |
Collapse
|
5
|
Zhang J, Liao Z, Chen L, Zhu S. Rapid Access to Oxa‐Bridged Bicyclic Skeletons through Gold‐Catalyzed Tandem Rearrangement Reaction. Chemistry 2019; 25:9405-9409. [DOI: 10.1002/chem.201900807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/12/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Jiantao Zhang
- Key Laboratory of Functional Molecular Engineering of, Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| | - Zhehui Liao
- Key Laboratory of Functional Molecular Engineering of, Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| | - Lianfen Chen
- Key Laboratory of Functional Molecular Engineering of, Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of, Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
- Guangdong Engineering Research Center for Green Fine ChemicalsSchool of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
6
|
Zhao Y, Jin J, Chan PWH. Gold Catalyzed Photoredox C1‐Alkynylation of
N
‐Alkyl‐1,2,3,4‐tetrahydroisoquinolines by 1‐Bromoalkynes with UVA LED Light. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yichao Zhao
- School of Chemistry Monash University, Clayton Victoria 3800 Australia
| | - Jianwen Jin
- School of Chemistry Monash University, Clayton Victoria 3800 Australia
| | - Philip Wai Hong Chan
- School of Chemistry Monash University, Clayton Victoria 3800 Australia
- Department of Chemistry University of Warwick Coventry CV4 7AL United Kingdom
| |
Collapse
|
7
|
Tan JK, Mathiew M, Nayak S, Chan PWH. Brønsted Acid-Mediated Cycloaromatization of 1H-Indol-2-yl Propargyl Benzoates to 7H-Benzo[c]carbazoles. Chem Asian J 2017; 12:1475-1479. [PMID: 28608646 DOI: 10.1002/asia.201700419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/07/2017] [Indexed: 01/18/2023]
Abstract
A synthetic method for the efficient assembly of benzo[c]carbazole derivatives that relies on silica gel-activated benzoic acid-mediated cycloaromatization of 1H-indol-2-yl propargyl benzoates under atmospheric conditions is described. Robust with a variety of substitution patterns tolerated, the reaction provides a one-step strategy to construct a member of the N-heterocycles family in good to excellent yields. A tentative mechanism is proposed in which the cycloaromatization process is thought to involve a Brønsted acid-mediated formal 1,3-acyloxy migration/6π-electrocyclization pathway.
Collapse
Affiliation(s)
- Javey Khiapeng Tan
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Mitch Mathiew
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Sanatan Nayak
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Philip Wai Hong Chan
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|