1
|
Hurtová M, Brdová D, Křížkovská B, Tedeschi G, Nejedlý T, Strnad O, Dobiasová S, Osifová Z, Kroneislová G, Lipov J, Valentová K, Viktorová J, Křen V. Nitrogen-Containing Flavonoids-Preparation and Biological Activity. ACS OMEGA 2024; 9:34938-34950. [PMID: 39157108 PMCID: PMC11325505 DOI: 10.1021/acsomega.4c04627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
In this work, we report the application of Buchwald-Hartwig amination for the preparation of new derivatives of quercetin and luteolin. Our investigation delves into the impact of aniline moiety on antioxidant, and anti-inflammatory activity, cytotoxicity, and the ability of flavonoids to modulate drug-resistance mechanisms in bacteria. The anti-inflammatory activity disappeared after the introduction of aniline into the flavonoids and the cytotoxicity remained low. Although the ability of quercetin and luteolin to modulate bacterial resistance to antibiotics has already been published, this is the first report on the molecular mechanism of this process. Both flavonoids attenuate erythromycin resistance by suppressing the ribosomal methyltransferase encoded by the ermA gene in Staphylococcus aureus. Notably, 4-(trifluoromethyl)anilino quercetin emerged as a potent ErmA inhibitor, likely by interacting with the RNA-binding pocket of ErmA. Additionally, both 4-fluoroanilino derivatives effectively impended the staphylococcal efflux system. All the prepared derivatives exhibited superior activity in modulating gentamicin resistance in S. aureus compared to the parent compounds. Overall, the incorporation of substituted anilines into the flavonoid core significantly enhanced its ability to combat multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Martina Hurtová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
| | - Daniela Brdová
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Bára Křížkovská
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Guglielmo Tedeschi
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Tomáš Nejedlý
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Ondřej Strnad
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Simona Dobiasová
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Zuzana Osifová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542, Prague 160 00, Czech Republic
| | - Gabriela Kroneislová
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
- Department
of Clinical Microbiology and ATB Center, Institute of Medical Biochemistry and Laboratory Diagnostics of the
General University Hospital and of The First Faculty of Medicine of
Charles University, U
Nemocnice 2, Prague 2 128
08, Czech Republic
| | - Jan Lipov
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Kateřina Valentová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
| | - Jitka Viktorová
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic
| | - Vladimír Křen
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
| |
Collapse
|
2
|
Pethő Z, Pajtás D, Piga M, Magyar Z, Zakany F, Kovacs T, Zidar N, Panyi G, Varga Z, Papp F. A synthetic flavonoid derivate in the plasma membrane transforms the voltage-clamp fluorometry signal of CiHv1. FEBS J 2024; 291:2354-2371. [PMID: 38431775 DOI: 10.1111/febs.17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/28/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Voltage-clamp fluorometry (VCF) enables the study of voltage-sensitive proteins through fluorescent labeling accompanied by ionic current measurements for voltage-gated ion channels. The heterogeneity of the fluorescent signal represents a significant challenge in VCF. The VCF signal depends on where the cysteine mutation is incorporated, making it difficult to compare data among different mutations and different studies and standardize their interpretation. We have recently shown that the VCF signal originates from quenching amino acids in the vicinity of the attached fluorophores, together with the effect of the lipid microenvironment. Based on these, we performed experiments to test the hypothesis that the VCF signal could be altered by amphiphilic quenching molecules in the cell membrane. Here we show that a phenylalanine-conjugated flavonoid (4-oxo-2-phenyl-4H-chromene-7-yl)-phenylalanine, (later Oxophench) has potent effects on the VCF signals of the Ciona intestinalis HV1 (CiHv1) proton channel. Using spectrofluorimetry, we showed that Oxophench quenches TAMRA (5(6)-carboxytetramethylrhodamine-(methane thiosulfonate)) fluorescence. Moreover, Oxophench reduces the baseline fluorescence in oocytes and incorporates into the cell membrane while reducing the membrane fluidity of HEK293 cells. Our model calculations confirmed that Oxophench, a potent membrane-bound quencher, modifies the VCF signal during conformational changes. These results support our previously published model of VCF signal generation and point out that a change in the VCF signal may not necessarily indicate an altered conformational transition of the investigated protein.
Collapse
Affiliation(s)
- Zoltán Pethő
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
- Institut für Physiologie II, University of Münster, Germany
| | - Dávid Pajtás
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Martina Piga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Zsuzsanna Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Nace Zidar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
3
|
Wang JY, Zhou WY, Huang XX, Song SJ. Flavonoids with antioxidant and tyrosinase inhibitory activity from corn silk ( Stigma maydis). Nat Prod Res 2023; 37:835-839. [PMID: 35736954 DOI: 10.1080/14786419.2022.2089986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Corn silk (Stigma maydis), being the styles and stigmas of maize, is a famous traditional medicine and functional tea in China. Research into the chemical composition of corn silk led to the identification of an unreported flavone (1, silkone A), accompanying with three known flavonoids (2-4). And their structures were elucidated through comprehensive spectroscopic analysis. Each obtained compound was evaluated for antioxidant capacity by DPPH, ABTS and FRAP assays. As a result, all tested compounds exhibited stronger radicals scavenging activities than Trolox in ABTS radical assay and displayed relatively weak antioxidant capacity in the other two experiments. Tyrosinase inhibitory activities of compounds 1-4 were also investigated, and compounds 3 and 4 demonstrated moderate inhibitory activities to tyrosinase with IC50 values of 0.49 and 0.21 mM, respectively, which was further investigated through molecular docking calculation. These results may contribute to the development of novel antioxidants and tyrosinase inhibitors from corn silk.
Collapse
Affiliation(s)
- Jia-Yi Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, Liaoning Province, China.,Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, Liaoning Province, China.,Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, Liaoning Province, China.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Wei-Yu Zhou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, Liaoning Province, China.,Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, Liaoning Province, China.,Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, Liaoning Province, China.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, Liaoning Province, China.,Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, Liaoning Province, China.,Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, Liaoning Province, China.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, Liaoning Province, China.,Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, Liaoning Province, China.,Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, Liaoning Province, China.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Panova MA, Shcherbakov KV, Zhilina EF, Burgart YV, Saloutin VI. Synthesis of Mono- and Polyazole Hybrids Based on Polyfluoroflavones. Molecules 2023; 28:molecules28020869. [PMID: 36677924 PMCID: PMC9865898 DOI: 10.3390/molecules28020869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
The possibility of functionalization of 2-(polyfluorophenyl)-4H-chromen-4-ones, with them having different numbers of fluorine atoms, with 1,2,4-triazole or imidazole under conditions of base-promoted nucleophilic aromatic substitution has been shown. A high selectivity of mono-substitution was found with the use of an azole (1.5 equiv.)/NaOBut(1.5 equiv.)/MeCN system. The structural features of fluorinated mono(azolyl)-substituted flavones in crystals were established using XRD analysis. The ability of penta- and tetrafluoroflavones to form persubstituted products with triazole under azole (6 equiv.)/NaOBut(6 equiv.)/DMF conditions was found in contrast to similar transformations with imidazole. On the basis of mono(azolyl)-containing polyfluoroflavones in reactions with triazole and pyrazole, polynuclear hybrid compounds containing various azole fragments were obtained. For poly(pyrazolyl)-substituted flavones, green emission in the solid state under UV-irradiation was found, and for some derivatives, weak fungistatic activity was found.
Collapse
|
5
|
Pereira AM, Cidade H, Tiritan ME. Stereoselective Synthesis of Flavonoids: A Brief Overview. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010426. [PMID: 36615614 PMCID: PMC9823814 DOI: 10.3390/molecules28010426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
Stereoselective synthesis has been emerging as a resourceful tool because it enables the obtaining of compounds with biological interest and high enantiomeric purity. Flavonoids are natural products with several biological activities. Owing to their biological potential and aiming to achieve enantiomerically pure forms, several methodologies of stereoselective synthesis have been implemented. Those approaches encompass stereoselective chalcone epoxidation, Sharpless asymmetric dihydroxylation, Mitsunobu reaction, and the cycloaddition of 1,4-benzoquinone. Chiral auxiliaries, organo-, organometallic, and biocatalysis, as well as the chiral pool approach were also employed with the goal of obtaining chiral bioactive flavonoids with a high enantiomeric ratio. Additionally, the employment of the Diels-Alder reaction based on the stereodivergent reaction on a racemic mixture strategy or using catalyst complexes to synthesise pure enantiomers of flavonoids was reported. Furthermore, biomimetic pathways displayed another approach as illustrated by the asymmetric coupling of 2-hydroxychalcones driven by visible light. Recently, an asymmetric transfer hydrogen-dynamic kinetic resolution was also applied to synthesise (R,R)-cis-alcohols which, in turn, would be used as building blocks for the stereoselective synthesis of flavonoids.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Maria Elizabeth Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
- Correspondence:
| |
Collapse
|
6
|
Thorat NM, Khodade VS, Ingale AP, Lokwani DK, Sarkate AP, Thopate SR. Molecular Docking Studies and Application of 6-(1-Arylmethanamino)-2-Phenyl-4 H-Chromen-4-Ones as Potent Antibacterial Agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2150238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nitin M. Thorat
- Department of Chemistry, Maharaja Jivajirao Shinde Arts, Science, Commerce College, Shrigonda, India
| | - Vinnayak S. Khodade
- Department of Chemistry, Johns Hopkins University Baltimore, Baltimore, MD, USA
| | - Ajit P. Ingale
- Department of Chemistry, Dada Patil College, Karjat, India
| | - Deepak K. Lokwani
- Department of Pharmaceutical Chemistry, Rajarshi Shahu College of Pharmacy, Buldana, India
| | - Aniket P. Sarkate
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Shankar R. Thopate
- Department of Chemistry, Radhabai Kale Mahila Mahavidyalaya Ahmednagar, Ahmednagar, India
| |
Collapse
|
7
|
Synthesis of functionalized flavones from 3-halo-2-(methylthio)-4H-chromen-4-ones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Abstract
Eucalyptus plants have attracted the attention of researchers and environmentalists worldwide because they are a rapidly growing source of wood and a source of oil used for multiple purposes. The main and the most important oil component is 1,8-cineole (eucalyptol: 60–85%). This review summarizes the literature reported to date involving the use of 1,8-cineole for the treatment of disorders. Additionally, we describe our efforts in the use of eucalyptol as a solvent for the synthesis of O,S,N-heterocycles. Solvents used in chemistry are a fundamental element of the environmental performance of processes in corporate and academic laboratories. Their influence on costs, safety and health cannot be neglected. Green solvents such as bio-based systems hold considerable additional promise to reduce the environmental impact of organic chemistry. The first section outlines the process leading to our discovery of an unprecedented solvent and its validation in the first coupling reactions. This section continues with the description of its properties and characteristics and its reuse as reported in the various studies conducted. The second section highlights the use of eucalyptol in a series of coupling reactions (i.e., Suzuki–Miyaura, Sonogashira–Hagihara, Buchwald–Hartwig, Migita–Kosugi–Stille, Hiyama and cyanation) that form O,S,N-heterocycles. We describe the optimization process applied to reach the ideal conditions. We also show that eucalyptol can be a good alternative to build heterocycles that contain oxygen, sulfur and nitrogen. These studies allowed us to demonstrate the viability and potential that bio solvents can have in synthesis laboratories.
Collapse
|
9
|
Pinto C, Cidade H, Pinto M, Tiritan ME. Chiral Flavonoids as Antitumor Agents. Pharmaceuticals (Basel) 2021; 14:1267. [PMID: 34959668 PMCID: PMC8704364 DOI: 10.3390/ph14121267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Flavonoids are a group of natural products with a great structural diversity, widely distributed in plant kingdom. They play an important role in plant growth, development and defense against aggressors. Flavonoids show a huge variety of biological activities such as antioxidant, anti-inflammatory, anti-mutagenic, antimicrobial and antitumor, being able to modulate a large diversity of cellular enzymatic activities. Among natural flavonoids, some classes comprise chiral molecules including flavanones, flavan-3-ols, isoflavanones, and rotenoids, which have one or more stereogenic centers. Interestingly, in some cases, individual compounds of enantiomeric pairs have shown different antitumor activity. In nature, these compounds are mainly biosynthesized as pure enantiomers. Nevertheless, they are often isolated as racemates, being necessary to carry out their chiral separation to perform enantioselectivity studies. Synthetic chiral flavonoids with promising antitumor activity have also been obtained using diverse synthetic approaches. In fact, several new chiral bioactive flavonoids have been synthesized by enantioselective synthesis. Particularly, flavopiridol was the first cyclin-dependent kinase (CDK) inhibitor which entered clinical trials. The chiral pool approaches using amino acid as chiral building blocks have also been reported to achieve small libraries of chrysin derivatives with more potent in vitro growth inhibitory effect than chrysin, reinforcing the importance of the introduction of chiral moieties to improve antitumor activity. In this work, a literature review of natural and synthetic chiral flavonoids with antitumor activity is reported for the first time.
Collapse
Affiliation(s)
- Cláudia Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.P.); (H.C.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.P.); (H.C.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.P.); (H.C.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Maria Elizabeth Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.P.); (H.C.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
10
|
Ichitsuka T, Komatsuzaki S, Masuda K, Koumura N, Sato K, Kobayashi S. Stereoretentive N-Arylation of Amino Acid Esters with Cyclohexanones Utilizing a Continuous-Flow System. Chemistry 2021; 27:10844-10848. [PMID: 33909295 DOI: 10.1002/chem.202101439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 01/29/2023]
Abstract
The N-arylation of chiral amino acid esters with minimal racemization is a challenging transformation because of the sensitivity of the α-stereocenter. A versatile synthetic method was developed to prepare N-arylated amino acid esters using cyclohexanones as aryl sources under continuous-flow conditions. The designed flow system, which consists of a coil reactor and a packed-bed reactor containing a Pd(OH)2 /C catalyst, efficiently afforded the desired N-arylated amino acids without significant racemization, accompanied by only small amounts of easily removable co-products (i. e., H2 O and alkanes). The efficiency and robustness of this method allowed for the continuous synthesis of the desired product in very high yield and enantiopurity with high space-time yield (74.1 g L-1 h-1 ) and turnover frequency (5.9 h-1 ) for at least 3 days.
Collapse
Affiliation(s)
- Tomohiro Ichitsuka
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan.,Research Institute of Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Nigatake 4-2-1, Sendai, Miyagi, 983-8551, Japan
| | - Shingo Komatsuzaki
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Koichiro Masuda
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Nagatoshi Koumura
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Shū Kobayashi
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan.,Department of Chemistry, School of Science, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
11
|
Abstract
We report here the use of eucalyptol as a bio-based solvent for the Buchwald–Hartwig reaction on O,S,N-heterocycles. These heterocycles containing oxygen, sulfur and nitrogen were chosen as targets or as starting materials. Once again, eucalyptol demonstrated to be a possible sustainable alternative to common solvents.
Collapse
|
12
|
Shcherbakov KV, Artemyeva MA, Burgart YV, Evstigneeva NP, Gerasimova NA, Zilberberg NV, Kungurov NV, Saloutin VI, Chupakhin ON. Transformations of 3-acyl-4H-polyfluorochromen-4-ones under the action of amino acids and biogenic amines. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Scattolin T, Bouayad-Gervais S, Schoenebeck F. Straightforward access to N-trifluoromethyl amides, carbamates, thiocarbamates and ureas. Nature 2019; 573:102-107. [DOI: 10.1038/s41586-019-1518-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/09/2019] [Indexed: 01/20/2023]
|
14
|
Akhila VR, Priya MR, Sherin DR, Krishnapriya GK, Keerthi SV, Manojkumar TK, Rajasekharan KN. Mechanochemical Synthesis, in vitro Evaluation and Molecular Docking Studies of 4-Amino-2-arylamino-5-(benzofuran-2-oyl)thiazoles as Antidiabetic Agents. LETT ORG CHEM 2019. [DOI: 10.2174/1570178615666180815124425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis of 4-amino-2-arylamino-5-(benzofuran-2-oyl)thiazoles 4a-h, as example of
2,4-diaminothiazole-benzofuran hybrids and an evaluation of their antidiabetic activity, by in vitro and
computational methods, are reported. The synthesis of these diaminothiazoles was achieved mechano
chemically by a rapid solvent-less method. Their antidiabetic activity was assessed by α-glucosidase
and α-amylase inhibition assays. The, IC50 value for α-glucosidase inhibition by 4-amino-5-
(benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) was found to be 20.04 µM and the IC50
value for α-amylase inhibition, 195.03 µM, whereas the corresponding values for reference acarbose
were 53.38 µM and 502.03 µM, respectively. Molecular docking studies at the active sites of α-
glucosidase and α-amylase showed that among the diaminothiazoles 4a-h now studied, 4-amino-5-
(benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) has the highest D-scores of -8.63 and
-8.08 for α-glucosidase and for α-amylase, with binding energies -47.76 and -19.73 kcal/mol, respectively.
Collapse
Affiliation(s)
- Vijayan R. Akhila
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | - Maheswari R. Priya
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | - Daisy R. Sherin
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management- Kerala, Thiruvananthapuram 695 581, Kerala, India
| | - Girija K. Krishnapriya
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | - Sreerekha V. Keerthi
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | - Thanathu K. Manojkumar
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management- Kerala, Thiruvananthapuram 695 581, Kerala, India
| | - Kallikat N. Rajasekharan
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| |
Collapse
|
15
|
Ghiasbeigi E, Soleiman‐Beigi M. Copper Immobilized on Isonicotinic Acid Hydrazide Functionalized Nano‐Magnetite as a Novel Recyclable Catalyst for Direct Synthesis of Phenols and Anilines. ChemistrySelect 2019. [DOI: 10.1002/slct.201803770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Elahe Ghiasbeigi
- Department of Chemistry Basic of Sciences FacultyIlam University PO Box 69315–516 Ilam Iran
| | | |
Collapse
|
16
|
Shelke YG, Yashmeen A, Gholap AVA, Gharpure SJ, Kapdi AR. Homogeneous Catalysis: A Powerful Technology for the Modification of Important Biomolecules. Chem Asian J 2018; 13:2991-3013. [PMID: 30063286 DOI: 10.1002/asia.201801020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/29/2018] [Indexed: 12/17/2022]
Abstract
Homogeneous catalysis plays an important and ubiquitous role in the synthesis of simple and complex molecules, including drug compounds, natural products, and agrochemicals. In recent years, the wide-reaching importance of homogeneous catalysis has made it an indispensable tool for the modification of biomolecules, such as carbohydrates (sugars), amino acids, peptides, nucleosides, nucleotides, and steroids. Such a synthetic strategy offers several advantages, which have led to the development of new molecules of biological relevance at a rapid rate relative to the number of available synthetic methods. Given the powerful nature of homogeneous catalysis in effecting these synthetic transformations, this Focus Review has been compiled to highlight these important developments.
Collapse
Affiliation(s)
- Yogesh G Shelke
- Department of Chemistry, Indian Institute of Technology, Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| | - Afsana Yashmeen
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Aniket V A Gholap
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology, Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| |
Collapse
|
17
|
Heravi MM, Kheilkordi Z, Zadsirjan V, Heydari M, Malmir M. Buchwald-Hartwig reaction: An overview. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.02.023] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|