1
|
Tian M, Ma X, Zhang T, Chang J, Liu B. Pd-Catalyzed [2 + 2 + 2] Cyclization of Alkyne-cyclohexadienones and O-Akynyl Benzenesulfonamides for Construction of Fused Tricyclic Hydronaphthofurans. J Org Chem 2025; 90:503-516. [PMID: 39680664 DOI: 10.1021/acs.joc.4c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A palladium-catalyzed [2 + 2 + 2] cyclization of 1,6-enynes with unsymmetrical alkynes has been successfully accomplished, resulting in the formation of a series of fused tricyclic hydronaphthofurans with high stereo- and regioselectivity in a single step. This reaction demonstrates 100% atomic economy and exhibits a broad substrate scope.
Collapse
Affiliation(s)
- Miaomiao Tian
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuxu Ma
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Tianyun Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Bingxian Liu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
2
|
Barik P, Behera SS, Nayak LK, Nanda LN, Nanda SK, Patri P. Transition metal catalysed cascade C-C and C-O bond forming events of alkynes. Org Biomol Chem 2024; 22:5052-5086. [PMID: 38856756 DOI: 10.1039/d3ob02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The past few decades have witnessed the emergence of domino reactions as a powerful tool for the multi-functionalization of alkynes for the rapid and smooth construction of complex molecular architectures. In this context, employing transition metal catalysis, vicinal/geminal cascade functionalization of alkynes involving C-C and C-O bond-formation reactions, has become a preferred strategy for the synthesis of oxygenated motifs. Despite this significant progress, reviews documenting such strategies are either metal/functional group-centric or target-oriented, thus hampering further developments. Therefore, in this review, different conceptual approaches based on C-C and C-O bond-forming events of alkynes such as carboxygenation (C-C and CO bond formation), carboalkoxylation (C-C and C-OR bond formation), and carboacetoxylation (C-C and C-OAc bond formations) are discussed, and examples from the literature from the last two decades are presented. Further, we have presented detailed insights into the mechanism of different transformations.
Collapse
Affiliation(s)
- Padmanava Barik
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| | | | - Laxmi Kanta Nayak
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| | | | - Santosh Kumar Nanda
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| | - Padmanava Patri
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| |
Collapse
|
3
|
Saxena A, Ghosh N. Sequential Cu(II)-Catalyzed Multicomponent C-N Coupling, Nucleophilic Addition, and Cyclization Cascade: A Diastereoselective Approach to Carboxamide-Embedded Hexahydrobenzofuran Core. J Org Chem 2023; 88:300-309. [PMID: 36571574 DOI: 10.1021/acs.joc.2c02320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cascade or domino reactions serve as a powerful technique for the synthesis of complex organic scaffolds in one pot. Herein, a Cu(II)-catalyzed and silica gel-assisted multicomponent reaction (MCR) between bromoalkyne-tethered cyclohexadienones, amides, and water for the construction of hexahydrobenzofuran-3-carboxamide is developed. The reaction proceeds via a C-N coupling reaction followed by hydrative cyclization of ynamide intermediates. Notably, good to excellent diastereoselectivity is complementary of this reaction.
Collapse
Affiliation(s)
- Anchal Saxena
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Nayan Ghosh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Jadhav SB, Dash SR, Maurya S, Nanubolu JB, Vanka K, Chegondi R. Enantioselective Cu(I)-catalyzed borylative cyclization of enone-tethered cyclohexadienones and mechanistic insights. Nat Commun 2022; 13:854. [PMID: 35165287 PMCID: PMC8844005 DOI: 10.1038/s41467-022-28288-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
The catalytic asymmetric borylation of conjugated carbonyls followed by stereoselective intramolecular cascade cyclizations with in situ generated chiral enolates are extremely rare. Herein, we report the enantioselective Cu(I)-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones. This asymmetric desymmetrization strategy has a broad range of substrate scope to generate densely functionalized bicyclic enones bearing four contiguous stereocenters with excellent yield, enantioselectivity, and diastereoselectivity. One-pot borylation/cyclization/oxidation via the sequential addition of sodium perborate reagent affords the corresponding alcohols without affecting yield and enantioselectivity. The synthetic potential of this reaction is explored through gram-scale reactions and further chemoselective transformations on products. DFT calculations explain the requirement of the base in an equimolar ratio in the reaction, as it leads to the formation of a lithium-enolate complex to undergo C-C bond formation via a chair-like transition state, with a barrier that is 22.5 kcal/mol more favourable than that of the copper-enolate complex. Rapidly building molecular structures with both elements of complexity and flexibility is a key goal of organic synthesis. Here the authors show a tandem copper-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones, to generate bicyclic borylated products in high yield and enantioselectivity.
Collapse
|
5
|
Li J, Zhao Y, Yang J, Li R, Cao Z, Wan X. Ferric Sulphate/Potassium Bisulfate Promoted Facile Synthesis of
N
‐Sulfonylimidates from a Multi‐Component Reaction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jingjing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Yanwei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Jinwei Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Ruyi Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Zhiyu Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
6
|
Munakala A, Phanindrudu M, Chegondi R. Transition-Metal Catalyzed Stereoselective Desymmetrization of Prochiral Cyclohexadienones. CHEM REC 2021; 21:3689-3726. [PMID: 34145713 DOI: 10.1002/tcr.202100136] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The development of transition-metal catalyzed enantioselective and diastereoselective transformations has contributed many advances in the field of synthetic organic chemistry. Particularly, stereoselective desymmetrization of prochiral cyclohexadienones represents a powerful strategy for accessing highly functionalized and stereochemically enriched scaffolds, which are often found in biologically active compounds and natural products. In recent years, several research groups including our group have made a significant progress on transition-metal catalyzed stereoselective desymmetrizations of 2,5-cyclohexadienones. In this account, we will provide an overview of the recent developments in this area employing Pd, Cu, Rh, Au, Ag, Ni, Co, and Mn-catalysts.
Collapse
Affiliation(s)
- Anandarao Munakala
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mandalaparthi Phanindrudu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Mallick RK, Vangara S, Kommu N, Guntreddi T, Sahoo AK. Lewis Acid-Driven Meyer-Schuster-Type Rearrangement of Yne-Dienone. J Org Chem 2021; 86:7059-7068. [PMID: 33914539 DOI: 10.1021/acs.joc.1c00290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developed herein is a Cu(II)-catalyzed Meyer-Schuster-type rearrangement of alkyne-tethered cyclohexadienone for the construction of m-enone-substituted phenols. The reaction involves an uncommon 5-exo-trig 1,6-enyne cyclization of alkyne-tethered-cyclohexadienone, aromatization-triggered C-O bond cleavage, and an electrocyclic 4π-ring-opening of oxetene intermediate. This atom-efficient transformation provides access to a wide range of synthetically important α-(m-substituted phenol)-α,β-unsaturated ketones, featuring a broad scope with labile functional group tolerance. The gram-scale demonstration makes this transformation synthetically viable. The synthetic application of α,β-unsaturated ketones is also showcased.
Collapse
Affiliation(s)
- Rajendra K Mallick
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Srinivas Vangara
- Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
| | - Nagarjuna Kommu
- Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
| | | | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India.,Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
8
|
Bahadorikhalili S, Divar M, Damghani T, Moeini F, Ghassamipour S, Iraji A, Miller MA, Larijani B, Mahdavi M. N-sulfonyl ketenimine as a versatile intermediate for the synthesis of heteroatom containing compounds. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Smolobochkin AV, Gazizov AS, Burilov AR, Pudovik MA, Sinyashin OG. Advances in the synthesis of heterocycles bearing an endocyclic urea moiety. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Li Z, Qiu X, Meng N, Liu Z. Progress in the Synthesis of Hydrobenzofurans from O-Cyclohexadienone-tethered 1,6-Enynes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Wu JY, Liao WJ, Lin XY, Liang CF. A facile access to N-sulfonylthioimidates and their use for the transformation to 3,4-dihydroquinazolines. Org Biomol Chem 2020; 18:8881-8885. [PMID: 33107883 DOI: 10.1039/d0ob01963a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-Sulfonylthioimidates can be efficiently synthesized through one-pot three-component coupling of terminal alkynes, sulfonyl azides, and thiols by using a copper(i) catalyst in the presence of 4-dimethylaminopyridine. The proposed reaction is characterized by mild reaction conditions and tolerance of diverse functional groups. Additionally, the crucial pharmacophore of 3,4-dihydroquinazolines was synthesized using a one-pot synthetic strategy from N-sulfonylthioimidates.
Collapse
Affiliation(s)
- Jia-Yu Wu
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan.
| | | | | | | |
Collapse
|
12
|
Nikonov AY, Sterkhova IV, Kolyvanov NA, Serykh VY, Lazareva NF. O-Trimethylsilyl-N-phenylsulfonylacetimidate: Synthesis and Structure. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220090091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Munakala A, Gollapelli KK, Nanubolu JB, Chegondi R. Silver(I)-Catalyzed Oxidative Intramolecular Cyclopropanation: Access to Complex Tricyclo[3.3.1.0]nonanediones via Semipinacol-Type Rearrangement. Org Lett 2020; 22:7019-7024. [DOI: 10.1021/acs.orglett.0c02555] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Anandarao Munakala
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | | | - Rambabu Chegondi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Al-Tel TH, Srinivasulu V, Ramanathan M, Soares NC, Sebastian A, Bolognesi ML, Abu-Yousef IA, Majdalawieh A. Stereocontrolled transformations of cyclohexadienone derivatives to access stereochemically rich and natural product-inspired architectures. Org Biomol Chem 2020; 18:8526-8571. [PMID: 33043327 DOI: 10.1039/d0ob01550d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The last two decades or so have witnessed an upsurge in defining the art of designing complex natural products and nature-inspired molecules. Throughout these decades, fundamental insights into stereocontrolled, step-economic and atom-economical synthesis principles were achieved by the numerous synthetic accomplishments particularly in diversity-oriented synthesis (DOS). This has empowered the visualization of the third dimension in synthetic design and thus has resulted in a dramatic increase with today's diversity-oriented synthesis (DOS) at the forefront enabling access to diverse scaffolds with a high degree of stereochemical and skeletal complexity. To this end, a starting material-based approach is one of the powerful tools utilized in DOS that allows rapid access to molecular architectures with a high sp3 content. Skeletal and stereochemical diversity is often paramount for the selective modulation of the biological function of a complementary protein in the biological space. In this context, stereocontrolled transformation of cyclohexadienone scaffolds has positioned itself as a powerful platform for the rapid generation of stereochemically enriched and natural product-inspired compound collections. In this review, we cover multidirectional synthetic strategies that utilized cyclohexadienone derivatives as pluripotent building blocks en route for the construction of novel chemical space.
Collapse
Affiliation(s)
- Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Mani Ramanathan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Anusha Sebastian
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Maria L Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - Università di Bologna, Via Belmeloro, 6, 40126 Bologna, Italy
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Amin Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Jadhav SB, Chegondi R. Diastereoselective Desymmetrization of p-Quinamines through Regioselective Ring Opening of Epoxides and Aziridines. Org Lett 2019; 21:10115-10119. [DOI: 10.1021/acs.orglett.9b04110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sandip B. Jadhav
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Thopate SB, Jadhav SB, Nanubolu JB, Chegondi R. Stereoselective Desymmetrization of Cyclohexadienone-Tethered Enones: Efficient Access to Highly Strained Polycyclic Indoles. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Satish B. Thopate
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sandip B. Jadhav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | | | - Rambabu Chegondi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
17
|
Sontakke GS, Pal K, Volla CMR. Rh(II)-Catalyzed Denitrogenative Transannulation of N-Sulfonyl-1,2,3-triazolyl Cyclohexadienones for the Synthesis of Benzofurans and Cyclopropa[cd]indole-carbaldehydes. J Org Chem 2019; 84:12198-12208. [DOI: 10.1021/acs.joc.9b01924] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Geetanjali S. Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
18
|
Mallick RK, Dutta S, Vanjari R, Voituriez A, Sahoo AK. Thioarylative Radical Cyclization of Yne-Dienone. J Org Chem 2019; 84:10509-10517. [DOI: 10.1021/acs.joc.9b01445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Shubham Dutta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Rajeshwer Vanjari
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Arnaud Voituriez
- Institut de Chimie des Substances Naturelles (ICSN), CNRS, 91198 Cedex Gif-sur-Yvette, France
| | - Akhila K. Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
19
|
He X, Wu Y, Zuo Y, Xie M, Li R, Shang Y. Transition metal- and oxidant-free sulfonylation of 1-sulfonyl-1 H-1,2,3-triazoles to enols for the synthesis of sulfonate derivatives. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1582065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P.R. China
| | - Yuhao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P.R. China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P.R. China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P.R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P.R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P.R. China
| |
Collapse
|
20
|
Jadhav SB, Thopate SB, Nanubolu JB, Chegondi R. Rh-Catalyzed diastereoselective desymmetrization of enone tethered-cyclohexadienones via tandem arylative cyclization. Org Biomol Chem 2019; 17:1937-1946. [DOI: 10.1039/c8ob02284d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rhodium-catalyzed arylative cyclization of enone tethered-cyclohexadienones has been developed with high efficiency, thus providing cis-fused bicyclic enones in good yields and with excellent diastereoselectivities.
Collapse
Affiliation(s)
- Sandip B. Jadhav
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT)
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Satish B. Thopate
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT)
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Jagadeesh Babu Nanubolu
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT)
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Rambabu Chegondi
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT)
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
21
|
Tang T, Moon NG, McKay L, Harned AM. New Strategy To Access Enantioenriched Cyclohexadienones: Kinetic Resolution of para-Quinols by Organocatalytic Thiol-Michael Addition Reactions. ACS OMEGA 2018; 3:15492-15500. [PMID: 31458205 PMCID: PMC6643461 DOI: 10.1021/acsomega.8b01787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/31/2018] [Indexed: 06/10/2023]
Abstract
Existing stereoselective routes to 2,5-cyclohexadienones involve either desymmetrization of an achiral substrate or have attempted to perform an asymmetric dearomatization of a phenol. Herein, we report proof-of-principle experiments aimed at developing a kinetic resolution as an alternative method for accessing enantioenriched 2,5-cyclohexadienones. More specifically, chiral bifunctional thiourea catalysts were used to promote the addition of 2-thionapthalene into unsymmetric para-quinols. The selectivity of the kinetic resolution was found to be quite sensitive to substitution around the substrate.
Collapse
Affiliation(s)
- Ting Tang
- Department
of Chemistry & Biochemistry, Texas Tech
University, 1204 Boston Avenue, Lubbock, Texas 79409-1061, United States
| | - Nicholas G. Moon
- Department
of Chemistry, University of Minnesota—Twin
Cities, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Lydia McKay
- Department
of Chemistry & Biochemistry, Texas Tech
University, 1204 Boston Avenue, Lubbock, Texas 79409-1061, United States
| | - Andrew. M. Harned
- Department
of Chemistry & Biochemistry, Texas Tech
University, 1204 Boston Avenue, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
22
|
Green NJ, Connolly CA, Rietdijk KPW, Nichol GS, Duarte F, Lawrence AL. Bio‐inspired Domino oxa‐Michael/Diels–Alder/oxa‐Michael Dimerization of
para
‐Quinols. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nicholas J. Green
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Catherine A. Connolly
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Koen P. W. Rietdijk
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Gary S. Nichol
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Fernanda Duarte
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Andrew L. Lawrence
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
23
|
Green NJ, Connolly CA, Rietdijk KPW, Nichol GS, Duarte F, Lawrence AL. Bio‐inspired Domino oxa‐Michael/Diels–Alder/oxa‐Michael Dimerization of
para
‐Quinols. Angew Chem Int Ed Engl 2018; 57:6198-6202. [DOI: 10.1002/anie.201802125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Nicholas J. Green
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Catherine A. Connolly
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Koen P. W. Rietdijk
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Gary S. Nichol
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Fernanda Duarte
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Andrew L. Lawrence
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
24
|
Gollapelli KK, Donikela S, Manjula N, Chegondi R. Rhodium-Catalyzed Highly Regio- and Enantioselective Reductive Cyclization of Alkyne-Tethered Cyclohexadienones. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04054] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Sangeetha Donikela
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | | | - Rambabu Chegondi
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| |
Collapse
|
25
|
Reddy CR, Yarlagadda S, Sridhar B, Reddy BVS. Arylative Cyclization of Indole-1-carboxamides with 1,6-Enynes for the Synthesis of Polycyclic Indole Scaffolds. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Chatrala Ravikumar Reddy
- Centre for Semiochemicals; CSIR - Indian Institute of Chemical Technology; 500007 Hyderabad India
| | - Suresh Yarlagadda
- Centre for Semiochemicals; CSIR - Indian Institute of Chemical Technology; 500007 Hyderabad India
| | - Balasubramanian Sridhar
- Laboratory of X-ray Crystallography; CSIR - Indian Institute of Chemical Technology; 500007 Hyderabad India
| | - Basi V. Subba Reddy
- Centre for Semiochemicals; CSIR - Indian Institute of Chemical Technology; 500007 Hyderabad India
| |
Collapse
|