1
|
Newar UD, Kumar S, Borah A, Borra S, Manna P, Gokulnath S, Maurya RA. Access to Isoxazoles via Photo-oxygenation of Furan Tethered α-Azidoketones. J Org Chem 2024; 89:12378-12386. [PMID: 39171928 DOI: 10.1021/acs.joc.4c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Photocatalyst-free visible light-enabled direct oxygenation of furan-tethered α-azidoketones was studied. The reaction yielded various products depending on the substituents, with isoxazoles forming as the major products. The findings suggest that singlet oxygen was generated during the reaction and reacted with α-azidoketones in a [4 + 2] fashion to yield endoperoxides, which rearranged in multiple ways to generate isoxazoles. Some of the synthesized isoxazoles were evaluated as α-glucosidase inhibitors, and three of them 5bi, 5bj, and 5bl exhibited good activity with IC50 values of 454.57 ± 29.34, 147.84 ± 2.28, and 272.58 ± 42.06 μM, respectively, when compared with the standard drug acarbose (IC50 = 1224.33 ± 126.72 μM).
Collapse
Affiliation(s)
- Uma Devi Newar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Saurabh Kumar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
| | - Anupriya Borah
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Satheesh Borra
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Prasenjit Manna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Sabapathi Gokulnath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, India
| | - Ram Awatar Maurya
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| |
Collapse
|
2
|
Li Y, Zhang Y, Wang J, Xia D, Zhuo M, Zhu L, Li D, Ni SF, Zhu Y, Zhang WD. Visible-Light-Mediated Three-Component Strategy for the Synthesis of Isoxazolines and Isoxazoles. Org Lett 2024; 26:3130-3134. [PMID: 38587308 DOI: 10.1021/acs.orglett.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Isoxazolines and isoxazoles commonly serve as core structures of many therapeutic agents and natural products. However, the metal-free and catalysis-free strategy for the synthesis of these privileged motifs at room temperature remains a challenging task. Herein, we report a three-component strategy to afford diverse isoxazolines and isoxazoles via [3 + 2] cycloadditions of in situ-formed nitronates and olefins/alkynes under visible-light irradiation.
Collapse
Affiliation(s)
- Yanchuan Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Jinxin Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Dingding Xia
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Miaomiao Zhuo
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Lu Zhu
- Department of Ophthalmology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Dong Li
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Yanping Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai 264005, China
| | - Wei-Dong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Chen Y, Zhang S, Li T, Ma Q, Yuan Y, Jia X. Oxidants Controlled C-H Bond Functionalization of N-Aryltetrahydroisoquinolines: The Construction of the Quaternary Carbon Center and Cleavage of the C-N Bond. Chemistry 2024; 30:e202303151. [PMID: 37875461 DOI: 10.1002/chem.202303151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Initiated by triarylamine radical cation salt (TBPA), the direct C-H bond functionalization of α-N-aryltetrahydroisoquinoline esters was smoothly realized, giving a series of α-hydroxylated derivatives with a quaternary carbon center in good yields. Differently, in the presence of tert-butyl nitrite (TBN), the C-N single bond was cleaved to keto esters. The mechanistic study revealed that these reactions were mediated by a similar mechanism, in which the N-nitrosation might provide a driving force to the C-N bond cleavage.
Collapse
Affiliation(s)
- Yuqin Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Qiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| |
Collapse
|
4
|
Liu Y, Cao J, Zhang M, Zhang Z, Xia C, Guo G, Wang F. Regioselective Cycloaddition of Alkenes with tert-butyl Nitrite: A Cascade Approach to the Formation of Δ 2-Isoxazolines. J Org Chem 2023; 88:15311-15317. [PMID: 37873929 DOI: 10.1021/acs.joc.3c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A route for cycloaddition reaction of alkenes and tert-butyl nitrite to synthesize Δ2-isoxazolines has been developed. The overall process involves the formation of multiple chemical bonds without the use of a catalyst. This methodology features mild reaction conditions and good functional group tolerance, providing a direct approach for the preparation of isoxazolines.
Collapse
Affiliation(s)
- Yi Liu
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Juan Cao
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Mei Zhang
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Zenghui Zhang
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chengcai Xia
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Guili Guo
- Department of Biochemistry and Molecule Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Fugang Wang
- Pharmacy College, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
5
|
Song W, Liu Y, Yan N, Wan JP. Tunable Key [3 + 2] and [2 + 1] Cycloaddition of Enaminones and α-Diazo Compounds for the Synthesis of Isomeric Isoxazoles: Metal-Controlled Selectivity. Org Lett 2023; 25:2139-2144. [PMID: 36946543 DOI: 10.1021/acs.orglett.3c00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The three-component reactions of enaminones, α-diazo esters/ketones, and t-butyl nitrite (TBN) for the switchable synthesis of isomeric isoxazoles have been realized. The catalysis with Cu(II) salt provides 3,4-disubsituted isoxazoles via [3 + 2] cycloaddition. On the other hand, the catalysis of Ag(I) with identical substrates leads to isomeric isoxazoles with reversed C3 and C4 substitution based on a key [2 + 1] cycloaddition.
Collapse
Affiliation(s)
- Wenli Song
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| |
Collapse
|
6
|
Wang Z, Zhao Y, Chen J, Chen M, Li X, Jiang T, Liu F, Yang X, Sun Y, Zhu Y. One-Pot Synthesis of Isoxazole-Fused Tricyclic Quinazoline Alkaloid Derivatives via Intramolecular Cycloaddition of Propargyl-Substituted Methyl Azaarenes under Metal-Free Conditions. Molecules 2023; 28:molecules28062787. [PMID: 36985760 PMCID: PMC10057414 DOI: 10.3390/molecules28062787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
A practical method was developed for the convenient synthesis of isoxazole-fused tricyclic quinazoline alkaloids. This procedure accesses diverse isoxazole-fused tricyclic quinazoline alkaloids and their derivatives via intramolecular cycloaddition of methyl azaarenes with tert-butyl nitrite (TBN). In this method, TBN acts as the radical initiator and the source of N-O. Moreover, this protocol forms new C-N, C-C, and C-O bonds via sequence nitration and annulation in a one-pot process with broad substrate scope and functionalization of natural products.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuhan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jiaxin Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Mengyao Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xuehan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ting Jiang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Fang Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xi Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuanyuan Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yanping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
7
|
Pattanayak P, Chatterjee T. Synthesis of (4-Trifluoromethyl)isoxazoles through a Tandem Trifluoromethyloximation/Cyclization/Elimination Reaction of α,β-Unsaturated Carbonyls. J Org Chem 2023; 88:5420-5430. [PMID: 36913616 DOI: 10.1021/acs.joc.2c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
We disclose a metal-free, cascade regio- and stereoselective trifluormethyloximation, cyclization, and elimination strategy with readily available α,β-unsaturated carbonyl compounds to access a wide variety of pharmaceutically potential heteroaromatics, i.e., 4-(trifluoromethyl)isoxazoles including a trifluoromethyl analogue of an anticancer agent. The transformation requires only a couple of commercially available and cheap reagents i.e., CF3SO2Na as the trifluoromethyl source, and tBuONO as an oxidant as well as a source of N and O. Notably, 5-alkenyl-4-(trifluoromethyl)isoxazoles were further synthetically diversified to a new class of biheteroaryls, i.e., 5-(3-pyrrolyl)-4-(trifluoromethyl)isoxazoles. Mechanistic studies revealed a radical pathway for the reaction.
Collapse
Affiliation(s)
- Paramita Pattanayak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana, India
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana, India
| |
Collapse
|
8
|
Sun Z, Zhang S, Ma Q, Li Y, Ding H, Yuan Y, Jia X. Tert-Butyl Nitrite-initiated C-N Bond Cleavage of 1-Nitromethyl-N-aryltetrahydroisoquinolines: Synthesis of Furoxans with N-NO Skeleton. Chem Asian J 2023; 18:e202201265. [PMID: 36655414 DOI: 10.1002/asia.202201265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
A series of furoxan derivatives with N-nitroso groups were synthesized in good yields by TBN initiated radical sp3 C-N bond cleavage of 1-nitromethyl-N-aryltetrahydroisoquinolines. This reaction grafts the biologically important furoxan skeleton and N-nitroso group into on molecule, greatly improving the molecular complexity in one step transformation. The mechanistic study shows that this reaction is mediated by the in situ generated α-carbonyl nitrile oxide, which is afforded by TBN promoted C-N bond cleavage.
Collapse
Affiliation(s)
- Zheng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Qiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yuemei Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Han Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
9
|
Chen L, Wang Z, Liu H, Li X, Wang B. tert-Butyl nitrite triggered radical cascade reaction for synthesizing isoxazoles by a one-pot multicomponent strategy. Chem Commun (Camb) 2022; 58:9152-9155. [PMID: 35894608 DOI: 10.1039/d2cc02823a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A metal-free radical cyclization/dehydrogenation cascade of alkenes with aldehydes has been developed for the synthesis of 3,5-disubstituted isoxazoles in a one-pot system. This protocol features excellent functional group tolerance and operational simplicity, and is easily scaled up. The radical process is well supported by TEMPO-adducts and the intermediate β-carbonyl ketoxime.
Collapse
Affiliation(s)
- Leijing Chen
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Zhen Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Hui Liu
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Xinyue Li
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Bin Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China. .,Institute of Pharmaceutical Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230038, P. R. China
| |
Collapse
|
10
|
Marques CS, Carreiro EP, Teixeira APS. Multicomponent Synthesis of Heterocycles. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Jiang P, Wang Y, Chen D, Zheng Y, Huang S. Synthesis of 3‐Acyl‐Isoxazoles
via
Radical 5‐
endo trig
Cyclization of β,γ‐Unsaturated Ketones with NaNO
2. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yaming Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
12
|
Zhang J, Zhang C, Zheng Z, Zhou P, Liu W. Research Progress of Sulfoxonium Ylides in the Construction of Five/Six-Membered Nitrogen-Containing Heterocycles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Arya GC, Kaur K, Jaitak V. Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem 2021; 221:113511. [PMID: 34000484 DOI: 10.1016/j.ejmech.2021.113511] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is the second most leading cause of death among women. Multiple drugs have been approved by FDA for the treatment of BC. The major drawbacks of existing drugs are the development of resistance, toxicity, selectivity problem. The other therapies like hormonal therapy, surgery, radiotherapy, and immune therapy are in use but showed many side effects like bioavailability issues, non-selectivity, pharmacokinetic-pharmacodynamic problems. Therefore, there is an urgent need to develop new moieties that are nonviolent and more effective in the treatment of cancer. Isoxazole derivatives have gain popularity in recent years due to anticancer potential with the least side effects. These derivatives act as an anticancer agent with different mechanisms like inducing apoptosis, aromatase inhibition, disturbing tubulin congregation, topoisomerase inhibition, HDAC inhibition, and ERα inhibition. In this article, we have explored the synthetic strategies, anticancer mechanism of action along with SAR studies of isoxazole derivatives.
Collapse
Affiliation(s)
- Girish Chandra Arya
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India.
| |
Collapse
|
14
|
One-pot synthesis of 5-phenylsulfonyl-3-aroylisoxazolines and 3-aroylisoxazoles from alkynes and (phenylsulfonyl)ethene. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Wang L, Zhang N. One-pot synthesis of 5-phenylsulfonyl-3-aroylisoxazolines and 3-aroylisoxazoles from alkynes and (phenylsulfonyl)ethene. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Xu J, Yang H, He L, Huang L, Shen J, Li W, Zhang P. Synthesis of ( E)-Quinoxalinone Oximes through a Multicomponent Reaction under Mild Conditions. Org Lett 2020; 23:195-201. [PMID: 33354970 DOI: 10.1021/acs.orglett.0c03918] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, a novel method for the gram-scale synthesis of (E)-quinoxalinone oximes through a multicomponent reaction under mild conditions is described. Such a transformation was performed under transition-metal-free conditions, affording (E)-oximes in a moderate-to-good yield through recrystallization. Our methodology demonstrates a successful combination of a Mannich-type reaction and radical coupling, providing a green and practical approach for the synthesis of potentially bioactive quinoxalinone-containing molecules.
Collapse
Affiliation(s)
- Jun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Huiyong Yang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lei He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
17
|
Antony P M, Balaji GL, Iniyavan P, Ila H. Reaction of 1,3-Bis(het)arylmonothio-1,3-diketones with Sodium Azide: Regioselective Synthesis of 3,5-Bis(het)arylisoxazoles via Intramolecular N–O Bond Formation. J Org Chem 2020; 85:15422-15436. [DOI: 10.1021/acs.joc.0c02216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mary Antony P
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Gantala L. Balaji
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Pethaperumal Iniyavan
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Hiriyakkanavar Ila
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
18
|
Ge J, Ding Q, Long X, Liu X, Peng Y. Copper(II)-Catalyzed Domino Synthesis of 4-Benzenesulfonyl Isoxazoles from 2-Nitro-1,3-enynes, Amines, and Sodium Benzenesulfinate. J Org Chem 2020; 85:13886-13894. [PMID: 33084339 DOI: 10.1021/acs.joc.0c01964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple and effective method for the synthesis of fully substituted 4-benzenesulfonyl isoxazoles through a copper(II)-catalyzed three-component reaction of 2-nitro-1,3-enynes, amines, and sodium benzenesulfinate is described. The reaction proceeds smoothly under mild conditions and provides the benzenesulfonyl isoxazoles with high chemoselectivity.
Collapse
Affiliation(s)
- Junying Ge
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.,Institute of Coordination Catalysis, Engineering Center of Jiangxi, University for Lithium Energy and Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun, Jiangxi 336000, China
| | - Qiuping Ding
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xujing Long
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xuan Liu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
19
|
Synthesis and photophysical insights of new fused N-heterocyclic derivatives with isoquinoline skeleton. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Mir BA, Rajamanickam S, Begum P, Patel BK. tert
-Butyl Nitrite Mediated Nitro-Nitratosation of Internal Alkenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bilal Ahmad Mir
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Assam India
| | - Suresh Rajamanickam
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Assam India
| | - Pakiza Begum
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Assam India
| | - Bhisma K. Patel
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Assam India
| |
Collapse
|
21
|
Alam T, Rakshit A, Begum P, Dahiya A, Patel BK. Visible-Light-Induced Difunctionalization of Styrenes: Synthesis of N-Hydroxybenzimidoyl Cyanides. Org Lett 2020; 22:3728-3733. [DOI: 10.1021/acs.orglett.0c01235] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Pakiza Begum
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
22
|
Yue X, He X, Wu Y, Hu M, Wu S, Xie Y, Li J. Metal‐Free Oxidative Decarboxylative Heteroannulation of Alkynyl Carboxylic Acids with Sulfinates and
tert
‐Butyl Nitrite toward 2,2‐Disulfonyl‐2
H
‐Azirines. ChemCatChem 2020. [DOI: 10.1002/cctc.201902400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xin Yue
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Xingyi He
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Yan‐Chen Wu
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Ming Hu
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Shuang Wu
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Ye‐Xiang Xie
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Jin‐Heng Li
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
- Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 P.R. China
| |
Collapse
|
23
|
Zhang J, Xie S, Liu P, Sun P. Mild and Regioselective Three‐component Heteroarylation‐Nitration of Alkenes with Imidazo[1,2‐
a
]pyridines and
tert
‐Butyl Nitrite. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000078] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jie Zhang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional MaterialsNanjing Normal University Nanjing 210023 People's Republic of China
| | - Shentong Xie
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional MaterialsNanjing Normal University Nanjing 210023 People's Republic of China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional MaterialsNanjing Normal University Nanjing 210023 People's Republic of China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional MaterialsNanjing Normal University Nanjing 210023 People's Republic of China
| |
Collapse
|
24
|
Pan Z, Mao K, Zhu G, Wang C, Zhang J, Rong L. Copper-Catalyzed Annulation Reaction of Alkenes and N-Alkyl(aryl)-1-(methylthio)-2-nitroethenamine: an Approach for the Synthesis of Isoxazole Derivatives. J Org Chem 2020; 85:3364-3373. [PMID: 32037815 DOI: 10.1021/acs.joc.9b03157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A copper-catalyzed annulation reaction to access a variety of isoxazoles from alkenes and oxazete in situ generated from N-alkyl(aryl)-1-(methylthio)-2-nitroethenamine was reported. A plausible mechanism underlying the formation of the product was proposed, which represented a new approach for the construction of isoxazolines. This reaction was capable of tolerating alkenes bearing various substituents, which showed a relatively broad substrate scope with good functional group compatibility.
Collapse
Affiliation(s)
- Zhengbing Pan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, PR China
| | - Kaimin Mao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, PR China
| | - Guangzhou Zhu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, PR China
| | - Chang Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, PR China
| | - Jinpeng Zhang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, PR China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, 221006 Jiangsu, PR China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, PR China
| |
Collapse
|
25
|
Yamamoto T, Togo H. Transformation of arenes into 3-arylpyrazoles and 3-arylisoxazolines with β-bromopropionyl chloride, hydrazine, and hydroxylamine. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Abstract
This mini-review will present the recent applications of Tert-Butyl Nitrite (TBN) in organic
synthesis. Due to its unique structural feature and wide application, TBN holds a prominent and
great potential in organic synthesis. The applications of TBN in three areas viz. aerobic oxidation,
annulation, and diazotization were reviewed recently; now, the current mini-review will describe the
studies carried out to date in areas such as nitration of alkane, alkene, alkyne, and aromatic compounds,
nitrosylation and sequential nitrosylation reactions, using TBN as source of oxygen and nitrogen.
The mechanisms of these transformations will be briefly described in this mini-review.
Collapse
Affiliation(s)
- Nader Ghaffari Khaligh
- Professor Reza Research Institute, Education Guilan, Rasht, District 1, 41569-17139, Iran
| |
Collapse
|
27
|
Yue X, Hu M, He X, Wu S, Li JH. A radical-mediated 1,3,4-trifunctionalization cascade of 1,3-enynes with sulfinates and tert-butyl nitrite: facile access to sulfonyl isoxazoles. Chem Commun (Camb) 2020; 56:6253-6256. [DOI: 10.1039/d0cc01659d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An unprecedented indium-promoted three-component 1,3,4-trifunctionalization cascade of 1,3-enynes with sulfinates and tert-butyl nitrite for producing 5-sulfonylisoxazoles via [3+2] annulation is reported.
Collapse
Affiliation(s)
- Xin Yue
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Xingyi He
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Shuang Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
28
|
Guo X, Xu G, Zhou L, Yan H, Hao XQ, Wang Q. Synthesis and application of α-carbonyl nitrile oxides. Org Chem Front 2020. [DOI: 10.1039/d0qo00780c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A strategy has been developed to synthesize α-carbonylfuran and isoxazole using tert-butyl nitrite (TBN) as a nitrogen source.
Collapse
Affiliation(s)
- Xuanhua Guo
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Guangqiang Xu
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Li Zhou
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Huating Yan
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Xin-Qi Hao
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Qinggang Wang
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| |
Collapse
|
29
|
Li J, Lin Z, Wu W, Jiang H. Recent advances in metal catalyzed or mediated cyclization/functionalization of alkynes to construct isoxazoles. Org Chem Front 2020. [DOI: 10.1039/d0qo00609b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarized the recent developments in metal catalyzed or mediated cyclization/functionalization of alkynes to construct isoxazoles.
Collapse
Affiliation(s)
- Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Zidong Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
30
|
Wang XD, Zhu LH, Liu P, Wang XY, Yuan HY, Zhao YL. Copper-Catalyzed Cascade Cyclization Reactions of Diazo Compounds with tert-Butyl Nitrite and Alkynes: One-Pot Synthesis of Isoxazoles. J Org Chem 2019; 84:16214-16221. [PMID: 31779304 DOI: 10.1021/acs.joc.9b02760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel copper-catalyzed [3 + 2] cycloaddition reaction of alkynes with nitrile oxides generated in situ from the coupling reaction of copper carbene and nitroso radical has been developed. The three-component reaction provides a simple and efficient method for the construction of isoxazoles in a highly regioselective manner in a single step. On the basis of the experimental results and density functional theory calculations, a catalytic cycle (CuI-CuII-Cu0-CuI) for this cascade cyclization reaction is proposed.
Collapse
Affiliation(s)
- Xue-Di Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Li-Han Zhu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Pei Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Xin-Yu Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Hai-Yan Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| |
Collapse
|
31
|
Xiong M, Liang X, Gao Z, Lei A, Pan Y. Synthesis of Isoxazolines and Oxazines by Electrochemical Intermolecular [2 + 1 + n] Annulation: Diazo Compounds Act as Radical Acceptors. Org Lett 2019; 21:9300-9305. [PMID: 31713430 DOI: 10.1021/acs.orglett.9b03306] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reported herein is an unprecedented synthesis of isoxazolines and oxazines through electrochemical intermolecular annulation of alkenes with tert-butyl nitrite, in which diazo compounds serve as radical acceptors. Notably, [2 + 1 + 2] and [2 + 1 + 3] annulations occur when styrenes and allylbenzenes are used as substrates, respectively. The latter reaction undergoes group migration to form more stable radical, manifesting radical route instead of conventional 1,3-dipolar cycloaddition occurs. Moreover, scale-up experiments suggest the potential application value of these transformations in industry.
Collapse
Affiliation(s)
- Mingteng Xiong
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Xiao Liang
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Zhan Gao
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Yuanjiang Pan
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , P. R. China
| |
Collapse
|
32
|
Wang D, Zhang F, Xiao F, Deng GJ. A three-component approach to isoxazolines and isoxazoles under metal-free conditions. Org Biomol Chem 2019; 17:9163-9168. [PMID: 31595941 DOI: 10.1039/c9ob01909j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A 1,3-dipolar cycloaddition of 2-methylquinoline, tert-butyl nitrite (TBN) and alkynes or alkenes for the synthesis of biheteroaryls containing both isoxazoline/isoxazole and quinoline motifs has been developed. In this protocol, TBN serves as a convenient N-O source to convert 2-methylquinoline into intermediate nitrile oxides in situ.
Collapse
Affiliation(s)
- Dahan Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan. Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | | | | | | |
Collapse
|
33
|
Dahiya A, Sahoo AK, Alam T, Patel BK. tert
‐Butyl Nitrite (TBN), a Multitasking Reagent in Organic Synthesis. Chem Asian J 2019; 14:4454-4492. [DOI: 10.1002/asia.201901072] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Anjali Dahiya
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 India
| | - Ashish Kumar Sahoo
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 India
| | - Tipu Alam
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 India
| | - Bhisma K. Patel
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 India
| |
Collapse
|
34
|
Wei W, Ying W, Meng X, Song S, Li Q. Copper‐Mediated Cascade Trifunctionalization of
N
‐Propargylamides. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Wen‐Ting Wei
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Wei‐Wei Ying
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Xiao‐Xiao Meng
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Si‐Zhe Song
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials School of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 P. R. China
| |
Collapse
|
35
|
Tang Z, Zhou Y, Song Q. Synthesis of Furoxans and Isoxazoles via Divergent [2 + 1 + 1 + 1] Annulations of Sulfoxonium Ylides and tBuONO. Org Lett 2019; 21:5273-5276. [DOI: 10.1021/acs.orglett.9b01876] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhonghe Tang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Yao Zhou
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- State Key Laboratroy of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
36
|
Sau P, Rakshit A, Alam T, Srivastava HK, Patel BK. tert-Butyl Nitrite Mediated Synthesis of 1,2,4-Oxadiazol-5(4H)-ones from Terminal Aryl Alkenes. Org Lett 2019; 21:4966-4970. [DOI: 10.1021/acs.orglett.9b01430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Prasenjit Sau
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Hemant Kumar Srivastava
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
37
|
Chen Y, Ma Y, Li L, Jiang H, Li Z. Nitration–Peroxidation of Alkenes: A Selective Approach to β-Peroxyl Nitroalkanes. Org Lett 2019; 21:1480-1483. [DOI: 10.1021/acs.orglett.9b00266] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuanjin Chen
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yangyang Ma
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Liangkui Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Hao Jiang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
38
|
He X, Yue X, Zhang L, Wu S, Hu M, Li JH. Multiple-functionalizations of terminal alkynes with sodium sulfinates and tert-butyl nitrite: facile synthesis of 2H-azirines. Chem Commun (Camb) 2019; 55:3517-3520. [DOI: 10.1039/c9cc00625g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new, catalyst-free tandem annulation route to 2,2-disulfonyl-2H-azirines via multiple-functionalizations of terminal alkynes with sodium sulfinates and tert-butyl nitrite is described.
Collapse
Affiliation(s)
- Xingyi He
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Xin Yue
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Lei Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Shuang Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
39
|
Guo X, Lv C, Mahmood Q, Zhou L, Xu G, Wang Q. Solvent-controlled chemoselective N-dealkylation-N-nitrosation or C-nitration of N-alkyl anilines with tert-butyl nitrite. Org Chem Front 2019. [DOI: 10.1039/c9qo00965e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A metal-free, acid-free and chemoselective N-dealkylation-N-nitrosation or C-nitration of N-alkyl anilines has been developed.
Collapse
Affiliation(s)
- Xuanhua Guo
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Chengdong Lv
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Qaiser Mahmood
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Li Zhou
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Guangqiang Xu
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Qinggang Wang
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| |
Collapse
|
40
|
Theoretical investigation of gold(I)-catalyzed intramolecular SEAr in isoxazole derivatives: Mechanisms, origin of regioselectivity, and role of hydrogen acceptor. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Mir BA, Singh SJ, Kumar R, Patel BK. tert-
Butyl Nitrite Mediated Different Functionalizations of Internal Alkenes: Paths to Furoxans and Nitroalkenes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800668] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bilal Ahmad Mir
- Department of Chemistry; Indian Institute of Technology Guwahati, North Guwahati; 781 039 Assam India
| | | | - Ritush Kumar
- Department of Chemistry; Indian Institute of Technology Guwahati, North Guwahati; 781 039 Assam India
| | - Bhisma K. Patel
- Department of Chemistry; Indian Institute of Technology Guwahati, North Guwahati; 781 039 Assam India
| |
Collapse
|
42
|
Chen R, Ogunlana AA, Fang S, Long W, Sun H, Bao X, Wan X. In situ generation of nitrile oxides from copper carbene and tert-butyl nitrite: synthesis of fully substituted isoxazoles. Org Biomol Chem 2018; 16:4683-4687. [PMID: 29892743 DOI: 10.1039/c8ob01067f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we present a novel [3 + 2] cycloaddition reaction of β-keto esters with nitrile oxides, which were generated in situ from copper carbene and tert-butyl nitrite. This three-component reaction provides new methodology for the direct synthesis of fully substituted isoxazole derivatives, featuring mild reaction conditions, readily accessible starting materials and simple operation. The experimental studies and DFT calculations suggest that the reaction starts with the generation of the key intermediate nitrile oxides, followed by a [3 + 2] cycloaddition reaction of β-keto esters to give the final isoxazole products.
Collapse
Affiliation(s)
- Rongxiang Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Abosede Adejoke Ogunlana
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Shangwen Fang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Wenhao Long
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Hongmei Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
43
|
Imai T, Togo H. One-Pot Preparation of 3-Arylisoxazole-4,5-dicarboxylates from Benzylic Chlorides and Acetylenedicarboxylates. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Taro Imai
- Graduate School of Science; Chiba University; Yayoi-cho 1-33, Inage-ku 263-8522 Chiba Japan
| | - Hideo Togo
- Graduate School of Science; Chiba University; Yayoi-cho 1-33, Inage-ku 263-8522 Chiba Japan
| |
Collapse
|
44
|
Morita T, Yugandar S, Fuse S, Nakamura H. Recent progresses in the synthesis of functionalized isoxazoles. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Sau P, Rakshit A, Modi A, Behera A, Patel BK. Three Sequential C–N Bond Formations: tert-Butyl Nitrite as a N1 Synthon in a Three Component Reaction Leading to Imidazo[1,2-a]quinolines and Imidazo[2,1-a]isoquinolines. J Org Chem 2018; 83:1056-1064. [DOI: 10.1021/acs.joc.7b02815] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Prasenjit Sau
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anju Modi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ahalya Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
46
|
Preeti P, Singh KN. Multicomponent reactions: a sustainable tool to 1,2- and 1,3-azoles. Org Biomol Chem 2018; 16:9084-9116. [DOI: 10.1039/c8ob01872c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present review outlines the recent advancements and pioneering efforts on the synthesis of 1,2/1,3-azoles employing a multicomponent strategy.
Collapse
Affiliation(s)
- Preeti Preeti
- Department of Chemistry (Centre of Advanced Study)
- Faculty of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Krishna Nand Singh
- Department of Chemistry (Centre of Advanced Study)
- Faculty of Science
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
47
|
Wang Q, Zhang X, Fan X. Synthesis of 2-aminobenzophenones through acylation of anilines with α-oxocarboxylic acids assisted by tert-butyl nitrite. Org Biomol Chem 2018; 16:7737-7747. [DOI: 10.1039/c8ob01846d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly facile all-in-one-pot synthesis of 2-aminobenzophenones directly from anilines, tert-butyl nitrite and α-oxocarboxylic acids under the catalysis of Pd(OAc)2 is presented.
Collapse
Affiliation(s)
- Qianqian Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| |
Collapse
|
48
|
Lai Z, Li Z, Liu Y, Yang P, Fang X, Zhang W, Liu B, Chang H, Xu H, Xu Y. Iron-Mediated Synthesis of Isoxazoles from Alkynes: Using Iron(III) Nitrate as a Nitration and Cyclization Reagent. J Org Chem 2017; 83:145-153. [DOI: 10.1021/acs.joc.7b02483] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhenzhen Lai
- College
of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Zhenxing Li
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, P. R. China
| | - Yawei Liu
- College
of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pengkun Yang
- College
of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Xiaomin Fang
- College
of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Wenkai Zhang
- College
of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Baoying Liu
- College
of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Haibo Chang
- College
of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Hao Xu
- College
of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, P. R. China
| | - Yuanqing Xu
- College
of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|