1
|
Bertus P, Caillé J. Advances in the Synthesis of Cyclopropylamines. Chem Rev 2025; 125:3242-3377. [PMID: 40048498 DOI: 10.1021/acs.chemrev.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Cyclopropylamines are an important subclass of substituted cyclopropanes that combine the unique electronic and steric properties of cyclopropanes with the presence of a donor nitrogen atom. In addition to their presence in a diverse array of biologically active compounds, cyclopropylamines are utilized as important synthetic intermediates, particularly in ring-opening or cycloaddition reactions. Consequently, the synthesis of these compounds has constituted a significant research topic, as evidenced by the abundant published synthetic methods. In addition to the widely used Curtius rearrangement, classical cyclopropanation methods have been adapted to integrate a nitrogen function (Simmons-Smith reaction, metal-catalyzed reaction of diazo compounds on olefins, Michael-initiated ring-closure reactions) with significant advances in enantioselective synthesis. More recently, specific methods have been developed for the preparation of the aminocyclopropane moiety (Kulinkovich reactions applied to amides and nitriles, addition to cyclopropenes, metal-catalyzed reactions involving C-H functionalization, ...). The topic of this review is to present the different methods for the preparation of cyclopropylamine derivatives, with the aim of covering the methodological advances as best as possible, highlighting their scope, their stereochemical aspects and future trends.
Collapse
Affiliation(s)
- Philippe Bertus
- Institut des Molécules et Matériaux du Mans, IMMM, CNRS UMR 6283, Le Mans Université, 72000 Le Mans, France
| | - Julien Caillé
- Institut de Chimie Organique et Analytique, ICOA, CNRS UMR 7311, University of Orléans, 45100 Orléans, France
| |
Collapse
|
2
|
Zafar M, Subramaniyan V, Tibika F, Tulchinsky Y. Cationic ligands - from monodentate to pincer systems. Chem Commun (Camb) 2024; 60:9871-9906. [PMID: 38920056 DOI: 10.1039/d4cc01489h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
For a long time, the small group of cationic ligands stood out as obscure systems within the general landscape of coordinative chemistry. However, this situation has started to change rapidly during the last decade, with more and more examples of metal-coordinated cationic species being reported. The growing interest in these systems is not only of purely academic nature, but also driven by accumulating evidence of their high catalytic utility. Overcoming the inherently poor coordinating ability of cationic species often required additional structural stabilization. In numerous cases this was realized by functionalizing them with a pair of chelating side-arms, effectively constructing a pincer-type scaffold. This comprehensive review aims to encompass all cationic ligands possessing such pincer architecture reported to date. Herein every cationic species that has ever been embedded in a pincer framework is described in terms of its electronic structure, followed by an in-depth discussion of its donor/acceptor properties, based on computational studies (DFT) and available experimental data (IR, NMR or CV). We then elaborate on how the positive charge of these ligands affects the spectroscopic and redox properties, as well as the reactivity, of their complexes, compared to those of the structurally related neutral ligands. Among other systems discussed, this review also surveys our own contribution to this field, namely, the introduction of sulfonium-based pincer ligands and their complexes, recently reported by our group.
Collapse
Affiliation(s)
- Mohammad Zafar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | | | - Françoise Tibika
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Yuri Tulchinsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
3
|
Ji X, Shen C, Ni Y, Si ZY, Wang Y, Zhi X, Zhao Y, Peng H, Liu L. Stereoselective Synthesis of Polysubstituted Conjugated Dienes Enabled by Photo-Driven Sequential Sigmatropic Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202400805. [PMID: 38587996 DOI: 10.1002/anie.202400805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
We here reported a highly stereoselective method for the synthesis of polysubstituted conjugated dienes from α-aryl α-diazo alkynyl ketones and pyrazole-substituted unsymmetric aminals under mild conditions, which was promoted by photo-irridation and involved with 1,6-dipolar intermediate and quadruple sigmatropic rearrangements, was successfully developed. In this transformation, the cleavage of four bonds and the recombination of five bonds were implemented in one operational step. This protocol provided a modular tool for constructing dienes from amines, pyrazoles and α-alkynyl-α-diazoketones in one-pot manner. The results of mechanistic investigation indicated that the plausible reaction path underwent the 1,6-sigmatropic rearrangement instead of the 1,5-sigmatropic rearrangement.
Collapse
Affiliation(s)
- Xin Ji
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Chaoren Shen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuhao Ni
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Zhi-Yao Si
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuzhu Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Xinrong Zhi
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuting Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Huiling Peng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
4
|
Le TV, Ramachandru GG, Daugulis O. Trifluoroethylation and Pentafluoropropylation of C(sp 3)-H Bonds. Chemistry 2024; 30:e202303190. [PMID: 38011542 PMCID: PMC10965378 DOI: 10.1002/chem.202303190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Polyfluorinated substituents often enhance effectiveness, improve the stability within metabolic processes, and boost the lipophilicity of biologically active compounds. However, methods for their introduction into aliphatic carbon chains remain very limited. A potentially general route to integrate the fluorinated scaffolds into organic molecules involves insertion of fluorine-containing carbenes into C(sp3)-H bonds. The electron-withdrawing characteristics of perfluoroalkyl groups enhances the reactivity of these carbenes which should enable the functionalization of unactivated C(sp3)-H bonds. Curiously, it appears that use of perfluoroalkyl-containing carbenes in alkane C-H functionalization is exceedingly rare. This concept describes photolysis, enzymatic catalysis, and transition metal catalysis as three primary approaches to C(sp3)-H functionalization by trifluoromethylcarbene and its homologues.
Collapse
Affiliation(s)
- Thanh V Le
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, USA
| | - Girish G Ramachandru
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, USA
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, USA
| |
Collapse
|
5
|
Schaus L, Das A, Knight AM, Jimenez-Osés G, Houk KN, Garcia-Borràs M, Arnold FH, Huang X. Protoglobin-Catalyzed Formation of cis-Trifluoromethyl-Substituted Cyclopropanes by Carbene Transfer. Angew Chem Int Ed Engl 2023; 62:e202208936. [PMID: 36533936 PMCID: PMC9894577 DOI: 10.1002/anie.202208936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 12/23/2022]
Abstract
Trifluoromethyl-substituted cyclopropanes (CF3 -CPAs) constitute an important class of compounds for drug discovery. While several methods have been developed for synthesis of trans-CF3 -CPAs, stereoselective production of corresponding cis-diastereomers remains a formidable challenge. We report a biocatalyst for diastereo- and enantio-selective synthesis of cis-CF3 -CPAs with activity on a variety of alkenes. We found that an engineered protoglobin from Aeropyrnum pernix (ApePgb) can catalyze this unusual reaction at preparative scale with low-to-excellent yield (6-55 %) and enantioselectivity (17-99 % ee), depending on the substrate. Computational studies revealed that the steric environment in the active site of the protoglobin forced iron-carbenoid and substrates to adopt a pro-cis near-attack conformation. This work demonstrates the capability of enzyme catalysts to tackle challenging chemistry problems and provides a powerful means to expand the structural diversity of CF3 -CPAs for drug discovery.
Collapse
Affiliation(s)
- Lucas Schaus
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Anders M Knight
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Gonzalo Jimenez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, 17003, Girona, Spain
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Xiongyi Huang
- Department of Chemistry, Johns-Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Schaus L, Das A, Knight AM, Jimenez‐Osés G, Houk KN, Garcia‐Borràs M, Arnold FH, Huang X. Protoglobin‐Catalyzed Formation of
cis
‐Trifluoromethyl‐Substituted Cyclopropanes by Carbene Transfer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lucas Schaus
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E California Blvd. Pasadena CA 91125 USA
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E California Blvd. Pasadena CA 91125 USA
| | - Anders M. Knight
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E California Blvd. Pasadena CA 91125 USA
| | - Gonzalo Jimenez‐Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE) Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Spain
| | - K. N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Marc Garcia‐Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/M. Aurèlia Capmany, 69 17003 Girona Spain
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E California Blvd. Pasadena CA 91125 USA
| | - Xiongyi Huang
- Department of Chemistry Johns-Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
7
|
Prakash M, Rani P, Samanta S. A substrate-dependent reaction of 1-aryl-2-alkyl-1,2-diketones with 2-aroyl-1-chlorocyclopropanecarboxylates: selective access to 2',5'-dicyclopropoxy-1,1':4',1''-teraryls and pentafulvenes. Org Biomol Chem 2022; 20:6445-6458. [PMID: 35894220 DOI: 10.1039/d2ob00971d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An interesting substrate-controlled one-pot approach to highly substituted 2',5'-dicyclopropoxy-1,1':4',1''-teraryls and 6-hydroxypentafulvenes involving various 1,2-diketones and 2-aroyl-1-chlorocyclopropanecarboxylates as 3C Michael acceptors triggered by Cs2CO3 has been developed. We noticed that 1,2-diketones play a decisive role in this reaction to determine the product's selectivity. For example, aryl rings having electron-poor functionalities at the para and meta-positions of 1,2-diketones led to 2,5-diarylhydroquinones selectively via a cyclodimerization/double oxa-Michael process with highly strained cyclopropenes. However, when 1-naphthyl/electron-donating aryl/ortho-aryl-substituted 1,2-diketones were chosen, the Michael-initiated ring expansion reaction (C-C and CC bonds) took place under the same conditions that gave the corresponding pentafulvenes predominately. Moreover, this reaction has several imperative features such as good to high diastereoselectivities, wide substrate scope, good functional group tolerance, transition metal-free process, etc.
Collapse
Affiliation(s)
- Meher Prakash
- Indian Institute of Technology Indore, Discipline of Chemistry, 453552, Indore, India.
| | - Poonam Rani
- Indian Institute of Technology Indore, Discipline of Chemistry, 453552, Indore, India.
| | - Sampak Samanta
- Indian Institute of Technology Indore, Discipline of Chemistry, 453552, Indore, India.
| |
Collapse
|
8
|
Ma Z, Deng Y, He J, Cao S. Solvent-controlled base-free synthesis of bis(trifluoromethyl)-cyclopropanes and -pyrazolines via cycloaddition of 2-trifluoromethyl-1,3-enynes with 2,2,2-trifluorodiazoethane. Org Biomol Chem 2022; 20:5071-5075. [PMID: 35704947 DOI: 10.1039/d2ob00894g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A highly efficient solvent-controlled synthesis of bis(trifluoromethyl)cyclopropanes and bis(trifluoromethyl)pyrazolines via a [2 + 1] or [3 + 2] cycloaddition reaction of 2-trifluoromethyl-1,3-conjugated enynes with CF3CHN2 was developed. The reactions of 2-trifluoromethyl-1,3-conjugated enynes with CF3CHN2 proceeded smoothly under transition-metal and base-free conditions, affording the expected cycloaddition products in good to excellent yields. When DMAc (N,N-dimethylacetamide) was used as the solvent, bis(trifluoromethyl)pyrazolines were obtained; however, in contrast, bis(trifluoromethyl)cyclopropanes were formed by changing the solvent from DMAc to DCE (1,2-dichloroethane).
Collapse
Affiliation(s)
- Zhihong Ma
- Biotalk Company Limited, Shanghai, 200090, China
| | - Yupian Deng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Jingjing He
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| |
Collapse
|
9
|
Ma NN, Ren JA, Liu X, Chu XQ, Rao W, Shen ZL. Nickel-Catalyzed Direct Cross-Coupling of Aryl Sulfonium Salt with Aryl Bromide. Org Lett 2022; 24:1953-1957. [PMID: 35244408 DOI: 10.1021/acs.orglett.2c00357] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct cross-couplings of aryl sulfonium salts with aryl halides could be achieved by using nickel as a reaction catalyst. The reactions proceeded efficiently via C-S bond activation in the presence of magnesium turnings and lithium chloride in THF at ambient temperature to afford the corresponding biaryls in moderate to good yields, potentially serving as an attractive alternative to conventional cross-coupling reactions employing preprepared organometallic reagents.
Collapse
Affiliation(s)
- Na-Na Ma
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jing-Ao Ren
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiang Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
10
|
Delost MD, Njardarson JT. Mild Darzens Annulations for the Assembly of Trifluoromethylthiolated (SCF 3) Aziridine and Cyclopropane Structures. Org Lett 2021; 23:6121-6125. [PMID: 34292753 DOI: 10.1021/acs.orglett.1c02204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report mild new annulation approaches to trisubstituted trifluoromethylthiolated (SCF3) aziridines and cyclopropanes via Darzens inspired protocols. The products of these anionic annulations, rarely studied previously, possess attractive features rendering them valuable building blocks for synthesis platforms. In this study, trisubstituted acetophenone nucleophiles bearing SCF3 and bromine substituents in their α position were shown to undergo [2 + 1] annulations with vinyl ketones and tosyl-protected imines under mild reaction conditions.
Collapse
Affiliation(s)
- Michael D Delost
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
11
|
Kumar A, Jamali MF, Thomas S, Ahamad S, Kant R, Mohanan K. Additive‐Free Synthesis of Trifluoromethylated Spiro Cyclopropanes and Their Transformation into Trifluoromethylated Building Blocks. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Anuj Kumar
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Muhammad Fahad Jamali
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Shilpa Thomas
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Shakir Ahamad
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
- Department of Chemistry Aligarh Muslim University Aligarh 202002, UP India
| | - Ruchir Kant
- Molecular and Structural Biology Division CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Kishor Mohanan
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
12
|
Chen T, Wang A, Zhang L, Wei C, Huang J, Liu X, Fu Z. Formal [4 + 1] annulation of fluorinated sulfonium salt with cyclic unsaturated imines to access CF 3-substituted pyrroles. Org Biomol Chem 2021; 19:3128-3133. [PMID: 33885566 DOI: 10.1039/d1ob00218j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Formal [4 + 1] annulation of easily available fluorinated sulfonium salt with cyclic unsaturated imines has been successfully developed. A structurally diverse set of CF3-substituted dihydropyrroles was efficiently constructed in acceptable to excellent yields with excellent diastereoselectivities. The resulting CF3-containing dihydropyrroles from this transition metal-free strategy could be easily transformed to pyrroles in good yields under basic conditions.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sperga A, Melngaile R, Kazia A, Belyakov S, Veliks J. Optimized Monofluoromethylsulfonium Reagents for Fluoromethylene-Transfer Chemistry. J Org Chem 2021; 86:3196-3212. [PMID: 33502201 DOI: 10.1021/acs.joc.0c02561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An investigation of the properties and reactivity of fluoromethylsulfonium salts resulted in the redesign of the reagents for fluoromethylene transfer chemistry. The model reaction, fluorocyclopropanation of nitrostyrene, turned out to be a suitable platform for the discovery of more streamlined fluoromethylene transfer reagents. The incorporation of halides on one aryl ring increased the reactivity, and 2,4-dimethyl substitution on the other aryl ring provided a balance between the reactivity/crystallinity of the reagent as well as the atom economy. The utility of new reagents was demonstrated by the development of an efficient fluorocyclopropanation protocol to access a range of monofluorinated cyclopropane derivatives.
Collapse
Affiliation(s)
- Arturs Sperga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Renate Melngaile
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Armands Kazia
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Sergey Belyakov
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Janis Veliks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
14
|
Decaens J, Couve-Bonnaire S, Charette AB, Poisson T, Jubault P. Synthesis of Fluoro-, Monofluoromethyl-, Difluoromethyl-, and Trifluoromethyl-Substituted Three-Membered Rings. Chemistry 2021; 27:2935-2962. [PMID: 32939868 DOI: 10.1002/chem.202003822] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/13/2022]
Abstract
This Minireview describes recent advances toward the synthesis of fluoro-, monofluoromethyl-, difluoromethyl-, and trifluoromethyl-substituted three-membered rings such as cyclopropanes, aziridines, epoxides, episulfides, cyclopropenes, and 2 H-azirines. The main synthetic methodologies since 2016 for cyclopropanes and since 2010 for the other three-membered rings are reported.
Collapse
Affiliation(s)
- Jonathan Decaens
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ, 76000, Rouen, France
| | | | - André B Charette
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal, PO Box 6128, Station Downtown, Montréal, Québec, H3C 3J7, Canada
| | - Thomas Poisson
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ, 76000, Rouen, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris, France
| | - Philippe Jubault
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ, 76000, Rouen, France
| |
Collapse
|
15
|
Yamada K, Yanagi T, Yorimitsu H. Generation of Organozinc Reagents from Arylsulfonium Salts Using a Nickel Catalyst and Zinc Dust. Org Lett 2020; 22:9712-9718. [DOI: 10.1021/acs.orglett.0c03782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kodai Yamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoyuki Yanagi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
16
|
Pei C, Yang Z, Koenigs RM. Synthesis of Trifluoromethylated Tetrasubstituted Allenes via Palladium-Catalyzed Carbene Transfer Reaction. Org Lett 2020; 22:7300-7304. [PMID: 32866017 DOI: 10.1021/acs.orglett.0c02638] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we report on the palladium-catalyzed synthesis of trifluoromethylated, tetrasubstituted allenes from vinyl bromides and trifluoromethylated diazoalkanes in good to excellent yield. This reaction proceeds via oxidative addition of a Pd(0) complex with vinyl bromide. Subsequent base-promoted reductive elimination generates the allene. This methodology provides an efficient strategy even on gram scale to valuable trifluoromethylated, tetrasubstituted allenes under mild reaction conditions. The allene products can be used in acid catalyzed cyclization reactions to give trifluoromethylated indene products.
Collapse
Affiliation(s)
- Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Zhen Yang
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
17
|
Chen GS, Yan XX, Chen SJ, Mao XY, Li ZD, Liu YL. Diastereoselective Synthesis of 1,3-Diyne-Tethered Trifluoromethylcyclopropanes through a Sulfur Ylide Mediated Cyclopropanation/DBU-Mediated Epimerization Sequence. J Org Chem 2020; 85:6252-6260. [PMID: 32298579 DOI: 10.1021/acs.joc.0c00162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A one-pot synthesis of 1,3-diyne-tethered trifluoromethylcyclopropanes starting from 2-CF3-3,5-diyne-1-enes and sulfur ylides via a sulfur ylide mediated cyclopropanation and a DBU-mediated epimerization sequence is described in this work. This process is highly diastereoselective with broad substrate scope. Moreover, a series of synthetic transformations based on the diyne moieties were conducted smoothly, affording cyclopropanes featuring trifluoromethyl-substituted all-carbon quaternary centers.
Collapse
Affiliation(s)
- Guo-Shu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Xiao-Xue Yan
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Shu-Jie Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China.,Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P.R. China
| | - Xiang-Yu Mao
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Zhao-Dong Li
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| |
Collapse
|
18
|
Tobrman T, Krupička M, Polák P, Dvořáková H, Čubiňák M, Babor M, Dvořák D. Diastereoselective Cyclopropanation through Michael Addition-Initiated Ring Closure between α,α-Dibromoketones and α,β-Unsaturated Fischer Carbene Complexes. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomáš Tobrman
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Peter Polák
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Hana Dvořáková
- Laboratory of NMR Spectroscopy; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Marek Čubiňák
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Martin Babor
- Department of Solid State Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Dalimil Dvořák
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| |
Collapse
|
19
|
Tran UPN, Hommelsheim R, Yang Z, Empel C, Hock KJ, Nguyen TV, Koenigs RM. Catalytic Synthesis of Trifluoromethyl Cyclopropenes and Oligo-Cyclopropenes. Chemistry 2020; 26:1254-1257. [PMID: 31617620 PMCID: PMC7028152 DOI: 10.1002/chem.201904680] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 12/17/2022]
Abstract
The synthesis of trifluoromethylated cyclopropenes is often associated with important applications in drug discovery and functional materials. In this report, we describe the use of readily available chiral rhodium(II) catalysts for a highly efficient asymmetric cyclopropenation reaction of fluorinated donor–acceptor diazoalkanes with a broad variety of aliphatic and aromatic alkynes. Further studies highlight the unique reactivity of fluorinated donor–acceptor diazoalkanes in the synthesis of oligo‐cyclopropenes. Subsequent C−H functionalization of trifluoromethyl cyclopropenes furnishes densely substituted cyclopropene frameworks and also allows the alternative synthesis of bis‐cyclopropenes.
Collapse
Affiliation(s)
- Uyen P N Tran
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.,School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Renè Hommelsheim
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Zhen Yang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Katharina J Hock
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thanh V Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - René M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
20
|
Yanagi T, Somerville RJ, Nogi K, Martin R, Yorimitsu H. Ni-Catalyzed Carboxylation of C(sp2)–S Bonds with CO2: Evidence for the Multifaceted Role of Zn. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05141] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tomoyuki Yanagi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rosie J. Somerville
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Keisuke Nogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
21
|
He F, Pei C, Koenigs RM. Photochemical fluoro-amino etherification reactions of aryldiazoacetates with NFSI under stoichiometric conditions. Chem Commun (Camb) 2020; 56:599-602. [DOI: 10.1039/c9cc08888a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photochemical three-component reaction is reported that allows the introduction of fluorine and a short polyether side chain in high efficiency under metal-free conditions.
Collapse
Affiliation(s)
- Feifei He
- RWTH Aachen University
- Institute of Organic Chemistry
- 52074 Aachen
- Germany
| | - Chao Pei
- RWTH Aachen University
- Institute of Organic Chemistry
- 52074 Aachen
- Germany
| | - Rene M. Koenigs
- RWTH Aachen University
- Institute of Organic Chemistry
- 52074 Aachen
- Germany
| |
Collapse
|
22
|
Chen T, Zhang Y, Fu Z, Huang W. Cyclopropanation of Fluorinated Sulfur Ylides with 1‐Azadienes: Facile Synthesis of CF
3
‐Substituted Spiro Scaffolds. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tao Chen
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Ye Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 30 South Puzhu Road Nanjing 211816 China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University 30 South Puzhu Road Nanjing 211816 China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
23
|
Jana S, Aseeva P, Koenigs RM. Rhodium catalysed synthesis of seleno-ketals via carbene transfer reactions of diazoesters. Chem Commun (Camb) 2019; 55:12825-12828. [PMID: 31595906 DOI: 10.1039/c9cc06830a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we report on rhodium catalysed carbene transfer reactions of diazoesters with diselenides that result in the formal insertion reaction of the carbene fragment into the Se-Se bond to give seleno-ketals in up to 96% yield (35 examples) via an ionic mechanism.
Collapse
Affiliation(s)
- Sripati Jana
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Polina Aseeva
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
24
|
Tian ZY, Zhang CP. Ullmann-type N-arylation of anilines with alkyl(aryl)sulfonium salts. Chem Commun (Camb) 2019; 55:11936-11939. [PMID: 31531434 DOI: 10.1039/c9cc06535k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A palladium/copper-cocatalyzed Ullmann-type N-arylation of anilines using alkyl(aryl)sulfonium triflates as arylation reagents has been accomplished. The reaction enabled Caryl-S bond cleavage over Calkyl-S bond breakage of alkyl(aryl)sulfoniums by Pd(P(tBu)3)2/CuI and gave the corresponding N-arylated products in good to high yields. It was also significant that the reactions of aniline with asymmetric butyl(mesityl)(aryl)sulfonium triflates showed excellent selectivity, in which the aryl groups other than the bulky and electron-rich mesityl moieties were transformed.
Collapse
Affiliation(s)
- Ze-Yu Tian
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China. and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Cheng-Pan Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China. and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
25
|
Shao J, Chen W, Ying Z, Liu S, Luo F, Ou L. Sulfur Ylide Initiated [4 + 1]/[4 + 2] Annulation Reactions: A One-Pot Approach to Dibenzofuran Acrylate Derivatives. Org Lett 2019; 21:6370-6373. [DOI: 10.1021/acs.orglett.9b02260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, P. R. China
| | - Wenteng Chen
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhimin Ying
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shuangrong Liu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Feng Luo
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lili Ou
- Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd., Hangzhou, 310011, P. R. China
| |
Collapse
|
26
|
Affiliation(s)
- Sripati Jana
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| |
Collapse
|
27
|
Cyr P, Flynn-Robitaille J, Boissarie P, Marinier A. Mild and Diazo-Free Synthesis of Trifluoromethyl-Cyclopropanes Using Sulfonium Ylides. Org Lett 2019; 21:2265-2268. [PMID: 30883143 DOI: 10.1021/acs.orglett.9b00557] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The synthesis of several 1,1-disubstituted trifluoromethyl-cyclopropanes (TFCPs), known as tert-butyl bioisosteres, has been achieved from the reaction between trifluoromethylalkenes and unstabilized sulfonium ylides in yields of ≤97%. This method offers practical access to this cyclopropyl moiety of pharmacological interest, employing a commercially available reagent at low temperatures. The synthesis of cyclopropanes bearing other electron-withdrawing groups as well as trisubstituted TFCPs was also accomplished.
Collapse
Affiliation(s)
- Patrick Cyr
- Medicinal Chemistry, Institute of Research in Immunology and Cancer , Université de Montréal , Montreal , QC H3C 3J7 , Canada
| | - Joël Flynn-Robitaille
- Medicinal Chemistry, Institute of Research in Immunology and Cancer , Université de Montréal , Montreal , QC H3C 3J7 , Canada
| | - Patrick Boissarie
- Medicinal Chemistry, Institute of Research in Immunology and Cancer , Université de Montréal , Montreal , QC H3C 3J7 , Canada
| | - Anne Marinier
- Medicinal Chemistry, Institute of Research in Immunology and Cancer , Université de Montréal , Montreal , QC H3C 3J7 , Canada.,Département de chimie, Faculté des Arts et Sciences , Université de Montréal , Montreal , QC H3C 3J7 , Canada.,Département de pharmacologie, Faculté de Médecine , Université de Montréal , Montreal , QC H3C 3J7 , Canada
| |
Collapse
|
28
|
Empel C, Hock KJ, Koenigs RM. Dealkylative intercepted rearrangement reactions of sulfur ylides. Chem Commun (Camb) 2019; 55:338-341. [DOI: 10.1039/c8cc08821g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A simple and readily available Fe(ii) catalyst can be employed in a formal functional group metathesis of thioethers with broad applicability and yields of up to 95%. Mechanistic investigations reveal a marked effect of chloride ions.
Collapse
Affiliation(s)
- Claire Empel
- RWTH Aachen University
- Institute of Organic Chemistry
- D-52074 Aachen
- Germany
| | - Katharina J. Hock
- RWTH Aachen University
- Institute of Organic Chemistry
- D-52074 Aachen
- Germany
| | - Rene M. Koenigs
- RWTH Aachen University
- Institute of Organic Chemistry
- D-52074 Aachen
- Germany
| |
Collapse
|
29
|
Arupula SK, Gudimella SK, Guin S, Mobin SM, Samanta S. Chemoselective cyclization of N-sulfonyl ketimines with ethenesulfonyl fluorides: access to trans-cyclopropanes and fused-dihydropyrroles. Org Biomol Chem 2019; 17:3451-3461. [DOI: 10.1039/c9ob00433e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stereo- and chemoselective ring closing reaction of N-sulfonyl ketimines with ethene sulfonyl fluorides promoted by DBU is reported. This selective C–C vs. C–N bond cyclization process delivers to trans-cyclopropanes (dr up to ≤99 : 1) and fused-dihydropyrroles.
Collapse
Affiliation(s)
| | | | - Soumitra Guin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| | - Shaikh M. Mobin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| | - Sampak Samanta
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| |
Collapse
|
30
|
Hommelsheim R, Hock KJ, Schumacher C, Hussein MA, Nguyen TV, Koenigs RM. Cyanomethyl anion transfer reagents for diastereoselective Corey-Chaykovsky cyclopropanation reactions. Chem Commun (Camb) 2018; 54:11439-11442. [PMID: 30250960 DOI: 10.1039/c8cc05602a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A readily available and bench-stable cyanomethyl sulfonium salt was used in highly diastereoselective Corey-Chaykovsky cyclopropanation reactions of electron-poor olefins. This efficient method provides a rapid route to access densely functionalized cyclopropyl nitriles.
Collapse
Affiliation(s)
- Renè Hommelsheim
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Noto N, Tanaka Y, Koike T, Akita M. Strongly Reducing (Diarylamino)anthracene Catalyst for Metal-Free Visible-Light Photocatalytic Fluoroalkylation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02885] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Chen G, Zhang X, Jia R, Li B, Fan X. Selective Synthesis of Benzo[a
]Carbazoles and Indolo[2,1-a
]-Isoquinolines via
Rh(III)-Catalyzed C−H Functionalizations of 2-Arylindoles with Sulfoxonium Ylides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800622] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Guang Chen
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Ruixue Jia
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Bin Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang, Henan 453007 People's Republic of China
| |
Collapse
|
33
|
Affiliation(s)
- Giulia Oss
- School of Chemistry University of New South Wales Sydney Australia
| | - Junming Ho
- School of Chemistry University of New South Wales Sydney Australia
| | | |
Collapse
|
34
|
Wang Z, Yang Y, Gao F, Wang Z, Luo Q, Fang L. Synthesis of 5-(Trifluoromethyl)pyrazolines by Formal [4 + 1]-Annulation of Fluorinated Sulfur Ylides and Azoalkenes. Org Lett 2018; 20:934-937. [DOI: 10.1021/acs.orglett.7b03811] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhiyong Wang
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yanzhou Yang
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Fang Gao
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Zhiyong Wang
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Qian Luo
- College
of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ling Fang
- College
of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
35
|
Winter M, Gaunersdorfer C, Roiser L, Zielke K, Monkowius U, Waser M. Synthesis of Trifluoroacetyl-Substituted Cyclopropanes Using Onium Ylides. European J Org Chem 2018; 2018:418-421. [PMID: 29491744 PMCID: PMC5817241 DOI: 10.1002/ejoc.201701699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 01/27/2023]
Abstract
The use of carbonyl-stabilized ammonium- and sulfonium ylides allows for the synthesis of highly-functionalized trifluoroacetyl-substituted cyclopropanes. It turned out that the diastereoselectivities strongly depend on the nature of the chosen ylide and the employed base. The products could be obtained in good yields under operationally simple conditions.
Collapse
Affiliation(s)
- Michael Winter
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Christina Gaunersdorfer
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Lukas Roiser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Katharina Zielke
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Uwe Monkowius
- School of EducationJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|
36
|
Ahire MM, Thoke MB, Mhaske SB. Application of Sulfur Ylides in 1,2-Difunctionalization of Arynes via Insertion into a C-S σ-Bond. Org Lett 2018; 20:848-851. [PMID: 29350042 DOI: 10.1021/acs.orglett.7b04003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel reactivity of sulfur ylides has been demonstrated in a transition-metal-free protocol to access ortho-substituted thioanisole derivatives by insertion of arynes into a C-S σ-bond in moderate to good yields. The reaction involves the formation of C-C and C-S bonds and consecutive breaking of two C-S bonds under operationally mild reaction conditions.
Collapse
Affiliation(s)
- Milind M Ahire
- Division of Organic Chemistry and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory , Pune 411008, India
| | - Mahesh B Thoke
- Division of Organic Chemistry and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory , Pune 411008, India
| | - Santosh B Mhaske
- Division of Organic Chemistry and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory , Pune 411008, India
| |
Collapse
|
37
|
Tian ZY, Hu YT, Teng HB, Zhang CP. Application of arylsulfonium salts as arylation reagents. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Jia P, Zhang Q, Zhuge Y, Liwei X, Huang Y. One-Pot Synthesis of Cyclopropanes from Methylene Azabicyclo[3.1.0]hexanes Obtained by Formal Sequential [1+2]- and [2+3]-Cycloaddition Reaction of Prop-2-ynylsulfonium Salts and Tosylaminomethyl Enones. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700959] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Penghao Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China, Fax: (+86)-22-2350-3159
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China, Fax: (+86)-22-2350-3159
| | - Yuzhou Zhuge
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China, Fax: (+86)-22-2350-3159
| | - Xingyue Liwei
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China, Fax: (+86)-22-2350-3159
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China, Fax: (+86)-22-2350-3159
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin People's Republic of China
| |
Collapse
|
39
|
Tian ZY, Wang SM, Jia SJ, Song HX, Zhang CP. Sonogashira Reaction Using Arylsulfonium Salts as Cross-Coupling Partners. Org Lett 2017; 19:5454-5457. [DOI: 10.1021/acs.orglett.7b02764] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ze-Yu Tian
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Shi-Meng Wang
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Su-Jiao Jia
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hai-Xia Song
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical
Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|