1
|
Mohammadi M, Aboonajmi J, Panahi F, Sasanipour M, Sharghi H. Zirconium-catalyzed one-pot synthesis of benzoxazoles using reaction of catechols, aldehydes and ammonium acetate. Sci Rep 2024; 14:25973. [PMID: 39472665 PMCID: PMC11522672 DOI: 10.1038/s41598-024-76839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
In this study, an efficient method for the synthesis of benzoxazoles by coupling catechols, aldehydes and ammonium acetate using ZrCl4 as catalyst in ethanol is reported. A wide range of benzoxazoles (59 examples) are smoothly produced in high yields (up to 97%). Other advantages of the method include large-scale synthesis and the use of oxygen as an oxidant. The mild reaction conditions allowed late-stage functionalization, facilitating access to several derivatives with biologically relevant structures such as β-lactam and quinoline heterocycles.
Collapse
Affiliation(s)
- Masoumeh Mohammadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran.
| | - Maryam Sasanipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| |
Collapse
|
2
|
Zhang CP, Zhu YJ, Wang D, Qian J, Zhao YP, Lian C, Zhang ZH, He MY, Chen SC, Chen Q. Ligand-Mediated Regulation of the Chemical/Thermal Stability and Catalytic Performance of Isostructural Cobalt(II) Coordination Polymers. Inorg Chem 2023; 62:17678-17690. [PMID: 37856236 DOI: 10.1021/acs.inorgchem.3c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Regulating the chemical/thermal stability and catalytic activity of coordination polymers (CPs) to achieve high catalytic performance is topical and challenging. The CPs are competent in promoting oxidative cross-coupling, yet they have not received substantial attention. Here, the ligand effect of the secondary ligand of CPs for oxidative cross-coupling reactions was investigated. Specifically, four new isostructural CPs [Co(Fbtx)1.5(4-R-1,2-BDC)]n (denoted as Co-CP-R, Fbtx = 1,4-bis(1,2,4-triazole-1-ylmethyl)-2,3,5,6-tetrafluorobenzene, 4-R-1,2-BDC = 4-R-1,2-benzenedicarboxylate, R = F, Cl, Br, CF3) were prepared. It was found that in the reactions of oxidative amination of benzoxazoles with secondary amines and the oxidative coupling of styrenes with benzaldehydes, both the chemical and thermal stabilities of the four Co-CPs with the R group followed the trend of -CF3 > -Br > -Cl > -F. Density functional theory (DFT) calculations suggested that the difference in reactivity may be ascribed to the effect of substituent groups on the electron transition energy of the cobalt(II) center of these Co-CPs. These findings highlight the secondary ligand effect in regulating the stability and catalytic performance of coordination networks.
Collapse
Affiliation(s)
- Cheng-Peng Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Yu-Jun Zhu
- Department of Pharmacy and Biomedical Engineering, Clinical College of Anhui Medical University, Hefei 230031, P. R. China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Yu-Pei Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Cheng Lian
- Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Sheng-Chun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
3
|
Vlocskó RB, Xie G, Török B. Green Synthesis of Aromatic Nitrogen-Containing Heterocycles by Catalytic and Non-Traditional Activation Methods. Molecules 2023; 28:molecules28104153. [PMID: 37241894 DOI: 10.3390/molecules28104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recent advances in the environmentally benign synthesis of aromatic N-heterocycles are reviewed, focusing primarily on the application of catalytic methods and non-traditional activation. This account features two main parts: the preparation of single ring N-heterocycles, and their condensed analogs. Both groups include compounds with one, two and more N-atoms. Due to the large number of protocols, this account focuses on providing representative examples to feature the available methods.
Collapse
Affiliation(s)
- R Bernadett Vlocskó
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Guoshu Xie
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| |
Collapse
|
4
|
Chen Y, Lei T, Zhu G, Xu F, Yang Z, Meng X, Fang X, Liu X. Efficient Degradation of polycyclic aromatic hydrocarbons over OMS-2 nanorods via PMS activation. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Wang X, Jiang Y, Zhao P, Meng X. Hierarchical structure and electronic effect promoted degradation of phenols over novel MnO2 nanoprisms via non-radical mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Van Emelen L, Henrion M, Lemmens R, De Vos D. C–N coupling reactions with arenes through C–H activation: the state-of-the-art versus the principles of green chemistry. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01827b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we discuss the state-of-the-art in arene C–N coupling through C–H activation and to what extent it complies with the principles of green chemistry, with a focus on heterogeneously catalysed systems.
Collapse
Affiliation(s)
- Lisa Van Emelen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Mickaël Henrion
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Robin Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| |
Collapse
|
7
|
Aboonajmi J, Panahi F, Hosseini MA, Aberi M, Sharghi H. Iodine-catalyzed synthesis of benzoxazoles using catechols, ammonium acetate, and alkenes/alkynes/ketones via C–C and C–O bond cleavage. RSC Adv 2022; 12:20968-20972. [PMID: 35919129 PMCID: PMC9302334 DOI: 10.1039/d2ra03340b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient metal-free synthesis strategy of benzoxazoles was developed via coupling catechols, ammonium acetate, and alkenes/alkynes/ketones. The developed methodology represents an operationally simple, one-pot and large-scale procedure for the preparation of benzoxazole derivatives using molecular iodine as the catalyst. A metal-free one-pot multi-component method for the efficient synthesis of 2-aryl benzoxazoles via coupling of catechols, ammonium acetate and alkenes/alkynes/ketones using an I2–DMSO catalyst system is illustrated.![]()
Collapse
Affiliation(s)
- Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Mina Aali Hosseini
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Mahdi Aberi
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Technical and Vocational University (TVU), Shiraz Branch, Shiraz, Iran
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
8
|
Copper/manganese oxide catalyzed regioselective amination of quinoline N-oxides: An example of synergistic cooperative catalysis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Sharghi H, Mashhadi E, Aberi M, Aboonajmi J. Synthesis of novel benzimidazoles and benzothiazoles via furan‐2‐carboxaldehydes,
o
‐phenylenediamines, and 2‐aminothiophenol using Cu(II) Schiff‐base@SiO
2
as a nanocatalyst. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hashem Sharghi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
| | - Elahe Mashhadi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
| | - Mahdi Aberi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Shiraz Branch Technical and Vocational University (TVU) Shiraz Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences Shiraz University Shiraz Iran
| |
Collapse
|
10
|
Aboonajmi J, Panahi F, Sharghi H. One-Pot Multicomponent Coupling Reaction of Catechols, Benzyl Alcohols/Benzyl Methyl Ethers, and Ammonium Acetate toward Synthesis of Benzoxazoles. ACS OMEGA 2021; 6:22395-22399. [PMID: 34497928 PMCID: PMC8412954 DOI: 10.1021/acsomega.1c03207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The multicomponent coupling reaction of catechol, ammonium acetate, and benzyl alcohol/benzyl methyl ether in the presence of a Fe(III) catalyst precursor afforded benzoxazole derivatives in good to excellent yields. The notable features of this protocol are abundant availability of the catalyst system, large-scale synthesis, high diversity, and high yields of products.
Collapse
|
11
|
Rao MS, Hussain S. TEMPO-mediated aerobic oxidative synthesis of 2-aryl benzoxazoles via ring-opening of benzoxazoles with benzylamines. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1949476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Patna, India
| |
Collapse
|
12
|
Valentini F, Piermatti O, Vaccaro L. Metal Nanoparticles as Sustainable Tools for C-N Bond Formation via C-H Activation. Molecules 2021; 26:molecules26134106. [PMID: 34279446 PMCID: PMC8272244 DOI: 10.3390/molecules26134106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The design of highly active metal nanoparticles to be employed as efficient heterogeneous catalysts is a key tool for the construction of complex organic molecules and the minimization of their environmental costs. The formation of novel C-N bonds via C-H activation is an effective atom-economical strategy to access high value materials in pharmaceuticals, polymers, and natural product production. In this contribution, the literature of the last ten years on the use of metal nanoparticles in the processes involving direct C-N bond formation will be discussed. Where possible, a discussion on the role and influence of the support used for the immobilization and/or the metal chosen is reported. Particular attention was given to the description of the experiments performed to elucidate the active mechanism.
Collapse
|
13
|
Wu S, Zhou D, Geng F, Dong J, Su L, Zhou Y, Yin S. Metal‐Free Oxidative Condensation of Catechols, Aldehydes and NH
4
OAc towards Benzoxazoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shaofeng Wu
- Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Dan Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Furong Geng
- Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Jianyu Dong
- Department of Educational Science Hunan First Normal University Changsha 410205 People's Republic of China
| | - Lebin Su
- Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Shuang‐Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| |
Collapse
|
14
|
Bi X, Yao N, Meng X, Gou M, Zhao P. MnCO3-Catalyzed Transesterification of Alcohols with Dimethyl Carbonate Under Mild Conditions. Catal Letters 2021. [DOI: 10.1007/s10562-020-03310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Singh H, Sen C, Suresh E, Panda AB, Ghosh SC. C-H Amidation and Amination of Arenes and Heteroarenes with Amide and Amine using Cu-MnO as a Reusable Catalyst under Mild Conditions. J Org Chem 2021; 86:3261-3275. [PMID: 33522804 DOI: 10.1021/acs.joc.0c02603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An atom-economical and efficient route for the direct amidation and amination of aryl C-H bonds using our synthesized recyclable heterogeneous Cu-MnO catalyst is reported here. The direct C-H amidation was carried out using a simple amide without any preactivated coupling partner, and simple air was used as the sole oxidant. The reaction proceeds very smoothly with a broad range of substrates containing numerous functional groups in very good to excellent yields. Direct C-H aminations with a secondary amine were carried out under base-, ligand-, and external oxidant-free conditions in very good to excellent yields in very mild conditions. Both the amidation and amination can be scaled up on a gram scale with similar yields. The major advantage is that our catalyst is recyclable and reused several times without any significant loss of reactivity.
Collapse
Affiliation(s)
- Harshvardhan Singh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Chiranjit Sen
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Eringathodi Suresh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Asit B Panda
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Subhash C Ghosh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
16
|
Khalili D, Evazi R, Neshat A, Aboonajmi J. Copper(I) Complex of Dihydro Bis(2‐Mercapto Benzimidazolyl) Borate as an Efficient Homogeneous Catalyst for the Synthesis of 2
H
‐Indazoles and 5‐Substituted 1
H
‐Tetrazoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202004387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dariush Khalili
- Department of Chemistry, College of Sciences Shiraz University Shiraz 71467-13565 Iran
| | - Roya Evazi
- Department of Chemistry, College of Sciences Shiraz University Shiraz 71467-13565 Iran
| | - Abdollah Neshat
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences Shiraz University Shiraz 71467-13565 Iran
| |
Collapse
|
17
|
Mardazad N, Khorshidi A, Fallah Shojaei A. Efficient one-pot synthesis and dehydrogenation of tricyclic dihydropyrimidines catalyzed by OMS-2-SO 3H, and application of the functional-chromophore products as colorimetric chemosensors. RSC Adv 2021; 11:12349-12360. [PMID: 35423781 PMCID: PMC8697086 DOI: 10.1039/d1ra01005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/23/2021] [Indexed: 11/04/2022] Open
Abstract
An efficient and convenient one-pot multicomponent reaction (MCR) for the synthesis and dehydrogenation of tricyclic dihydropyrimidine derivatives, catalyzed by –SO3H functionalized octahedral manganese oxide molecular sieves (OMS-2-SO3H) as a novel solid acid catalyst, is reported. All of the organic products and the catalyst were unambiguously characterized with conventional techniques including Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction analysis (XRD), 1H NMR, and 13C NMR spectroscopy. The targeted dehydrogenated chromophore compounds were successfully used as colorimetric chemosensors for detection of transition metals in aqueous solution. For example, 1-[4-(4-hydroxy-3-methoxy-phenyl)-2-methyl-benzo[4,5]imidazo[1,2-a]pyrimidin-3-yl]-ethanone (7d), exhibited high sensitivity and selectivity toward detection of Cr3+ over a panel of other transition metal cations. The interference of foreign ions was found to be negligible. It was found that a 1 : 1 complex of Cr3+ and 7d is responsible for the color change of the solution from ochre to brown. These newly devised chemosensors can also exhibit significant wavelength shifts (up to 100 nm) when used as pH indicators. 7d for example, showed a vivid and sharp color change from pink to yellow in the pH range of 4 to 6. Hyperconjugated products of dihydropyrimidines may act as colorimetric chemosensors.![]()
Collapse
Affiliation(s)
- Neda Mardazad
- Department of Chemistry
- Faculty of Sciences
- University of Guilan
- Rasht
- Iran
| | - Alireza Khorshidi
- Department of Chemistry
- Faculty of Sciences
- University of Guilan
- Rasht
- Iran
| | | |
Collapse
|
18
|
Bi X, Tao L, Yao N, Gou M, Chen G, Meng X, Zhao P. Selectivity-tunable oxidation of tetrahydro-β-carboline over an OMS-2 composite catalyst: preparation and catalytic performance. Dalton Trans 2021; 50:3682-3692. [PMID: 33630988 DOI: 10.1039/d1dt00168j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Controlling the reaction selectivity of organic transformations without losing high conversion is always a challenge in catalytic processes. In this work, a H3PO4·12WO3/OMS-2 nanocomposite catalyst ([PW]-OMS-2) was prepared through the oxidation of a Mn(ii) salt with sodium phosphotungstate by KMnO4. Comprehensive characterization indicates that different Mn2+ precursors significantly affected the crystalline phase and morphology of the as-synthesized catalysts and only MnSO4·H2O as the precursor could lead to a cryptomelane phase. Moreover, [PW]-OMS-2 demonstrated excellent catalytic activity toward aerobic oxidative dehydrogenation of tetrahydro-β-carbolines due to mixed crystalline phases, enhanced surface areas, rich surface oxygen vacancies and labile lattice oxygen species. In particular, β-carbolines and 3,4-dihydro-β-carbolines could be obtained from tetrahydro-β-carbolines with very high selectivity (up to 99%) over [PW]-OMS-2 via tuning the reaction solvent and temperature. Under the present catalytic system, scalable synthesis of a β-carboline was achieved and the composite catalyst showed good stability and recyclability. This work not only clarified the structure-activity relationship of the catalyst, but also provided a practical pathway to achieve flexible, controllable synthesis of functional N-heterocycles.
Collapse
Affiliation(s)
- Xiuru Bi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyao Tao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Yao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Mingxia Gou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Gexin Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
19
|
Abstract
Imines, versatile intermediates for organic synthesis, can be exploited for the
preparation of diverse classes of biologically active benzazoles. Because of the special
characteristics of the C=N bond, imines can be simultaneously used in the synthesis of
1,3-benzazoles and 1,2-benzazoles. With the development of imine synthesis, a variety of
novel cascade reactions for benzazole synthesis have been reported in the last decade.
Therefore, there is a strong need to elucidate the recent progress in the formation of various
classes of benzazoles, including benzimidazoles, benzoxazoles, benzothiazoles, indazoles,
and benzisoxazoles, via imines obtained by condensation reactions or oxidative/
redox coupling reactions In this review, we provide a comprehensive survey of this
area. In particular, various green and mild synthetic methodologies are summarized, and
the multiple roles of novel catalysts and significant mechanisms for several transformations are highlighted in
detail. We believe that this review will aid researchers studying the synthesis of complex molecules containing
the benzazole motif via imines.
Collapse
Affiliation(s)
- Ran An
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengbi Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingbo Zang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Xu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
20
|
Zaib S, Khan I. Recent Advances in the Sustainable Synthesis of Quinazolines Using Earth-Abundant First Row Transition Metals. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200726230848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Achieving challenging molecular diversity in contemporary chemical synthesis
remains a formidable hurdle, particularly in the delivery of diversified bioactive heterocyclic
pharmacophores for drug design and pharmaceutical applications. The coupling methods that
combine a diverse range of readily accessible and commercially available pools of substrates
under the action of earth-abundant first row transition metal catalysts have certainly matured
into powerful tools, thus offering sustainable alternatives to revolutionize the organic synthesis.
This minireview highlights the successful utilization of the catalytic ability of the first
row transition metals (Mn, Fe, Ni, Cu) in the modular assembly of quinazoline heterocycle,
ubiquitously present in numerous alkaloids, commercial medicines and is associated with a
diverse range of pharmacological activities. The broad substrate scope and high functional group tolerance of the
targeted methods were extensively explored, identifying the future strategic advances in the field. The investigation
will also be exemplified with mechanistic studies as long as they are deemed necessary.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
21
|
Aboonajmi J, Sharghi H, Aberi M, Shiri P. Consecutive Oxidation/Condensation/Cyclization/Aromatization Sequences Catalyzed by Nanostructured Iron(III)‐Porphyrin Complex towards Benzoxazole Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jasem Aboonajmi
- Department of Chemistry College of Sciences Shiraz University 71454 Shiraz Iran
| | - Hashem Sharghi
- Department of Chemistry College of Sciences Shiraz University 71454 Shiraz Iran
| | - Mahdi Aberi
- Department of Chemical and Materials Engineering Faculty of Shahid Rajaee, Shiraz Branch Technical and Vocational University (TVU) Shiraz Iran
| | - Pezhman Shiri
- Department of Chemistry College of Sciences Shiraz University 71454 Shiraz Iran
| |
Collapse
|
22
|
Highly efficient and heterogeneous OMS-2 for the directly oxidative degradation of organic dyes under acidic condition. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Sharghi H, Aboonajmi J, Aberi M. One-Pot Multicomponent Reaction of Catechols, Ammonium Acetate, and Aldehydes for the Synthesis of Benzoxazole Derivatives Using the Fe(III)-Salen Complex. J Org Chem 2020; 85:6567-6577. [PMID: 32326700 DOI: 10.1021/acs.joc.0c00560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Fe(III)-salen complex has been applied successfully as a catalyst for the novel, simple, efficient, and one-pot multicomponent synthesis of benzoxazole derivatives from catechols, ammonium acetate as the nitrogen source, and aldehydes (nontoxic and cheap alternatives of amines) for the first time. Using this procedure, a wide range of benzoxazoles was successfully synthesized in the presence of a catalyst in EtOH under mild conditions, and all products were obtained in excellent yields. To the best of our knowledge, this method is the first example of the multicomponent synthesis of benzoxazole derivatives using these starting materials. The notable features such as the use of air that is considered as a benign oxidant and EtOH as a green solvent, ease of product separation, readily available and inexpensive aldehydes, and mild conditions make our procedure more efficient and practical for organic synthesis. Moreover, the current protocol is successfully applied to synthesize desirable products on a large scale.
Collapse
Affiliation(s)
- Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Mahdi Aberi
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Shiraz Branch, Technical and Vocational University (TVU), Shiraz 71777, Iran
| |
Collapse
|
24
|
Shen J, Meng X. Selective synthesis of pyrimidines from cinnamyl alcohols and amidines using the heterogeneous OMS-2 catalyst. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Huang Y, Wang Y, Meng X, Liu X. Highly efficient Co-OMS-2 catalyst for the degradation of reactive blue 19 in aqueous solution. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Sharghi H, Aboonajmi J, Aberi M, Shekouhy M. Amino Acids: Nontoxic and Cheap Alternatives for Amines for the Synthesis of Benzoxazoles through the Oxidative Functionalization of Catechols. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hashem Sharghi
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| | - Mahdi Aberi
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Shiraz BranchTechnical and Vocational University (TVU) Shiraz Iran
| | - Mohsen Shekouhy
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| |
Collapse
|
27
|
Tang T, Bi X, Meng X, Chen G, Gou M, Liu X, Zhao P. MnOx/catechol/H2O: A cooperative catalytic system for aerobic oxidative dehydrogenation of N-heterocycles at room temperature. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Bi X, Tang T, Meng X, Gou M, Liu X, Zhao P. Aerobic oxidative dehydrogenation of N-heterocycles over OMS-2-based nanocomposite catalysts: preparation, characterization and kinetic study. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01968e] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OMS-2-based nanocomposites doped with sodium phosphotungstate were prepared and their remarkably enhanced catalytic activity and recyclability in aerobic oxidative dehydrogenation of N-heterocycles were examined in detail.
Collapse
Affiliation(s)
- Xiuru Bi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Tao Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Mingxia Gou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Xiang Liu
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- China
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
29
|
Highly efficient CuOx/OMS-2 catalyst for synthesis of phenoxathiin derivatives via intramolecular arylations of phenols with aryl halides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Liu X, Huang Y, Zhao P, Meng X, Astruc D. Precise Cu Localization‐Dependent Catalytic Degradation of Organic Pollutants in Water. ChemCatChem 2019. [DOI: 10.1002/cctc.201901440] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiang Liu
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang, Hubei 443002 P. R. China
| | - Yu Huang
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang, Hubei 443002 P. R. China
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Didier Astruc
- ISMUMR CNRS 5255Université de Bordeaux Talence Cedex 33405 France
| |
Collapse
|
31
|
Radhika S, Saranya S, Harry NA, Anilkumar G. Recent Advances and Prospects in the Chemistry of
o
‐Benzoquinones. ChemistrySelect 2019. [DOI: 10.1002/slct.201902637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sankaran Radhika
- School of Chemical SciencesMahatma Gandhi University, Priyadarsini Hills P.O., Kottayam Kerala 686560 India
| | - Salim Saranya
- School of Chemical SciencesMahatma Gandhi University, Priyadarsini Hills P.O., Kottayam Kerala 686560 India
| | - Nissy Ann Harry
- School of Chemical SciencesMahatma Gandhi University, Priyadarsini Hills P.O., Kottayam Kerala 686560 India
| | - Gopinathan Anilkumar
- School of Chemical SciencesMahatma Gandhi University, Priyadarsini Hills P.O., Kottayam Kerala 686560 India
- Advanced Molecular Materials Research Centre (AMMRC)Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam Kerala 686560 India
| |
Collapse
|
32
|
Shen J, Meng X. Base-free synthesis of 1,3,5-triazines via aerobic oxidation of alcohols and benzamidine over a recyclable OMS-2 catalyst. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
33
|
Li B, Bi X, Zhou J, Li C, Zhao P, Meng X. Synthesis of Crystalline OMS‐2 with Urea Hydrogen Peroxide and its Application in Aerobic Oxidation Reactions. ChemistrySelect 2019. [DOI: 10.1002/slct.201901205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bo Li
- Lanzhou Petrochemical Research CenterPetrochemical Research Institute, Petrochina Lanzhou 730060 P. R. China
| | - Xiuru Bi
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Jinbo Zhou
- Lanzhou Petrochemical Research CenterPetrochemical Research Institute, Petrochina Lanzhou 730060 P. R. China
| | - Changming Li
- Lanzhou Petrochemical Research CenterPetrochemical Research Institute, Petrochina Lanzhou 730060 P. R. China
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
34
|
Bi X, Meng X, Chen G, Chen B, Zhao P. Manganese oxide catalyzed synthesis of anti-HIV N-substituted benzimidazoles via a one-pot multistep process. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Meng X, Bi X, Chen G, Chen B, Zhao P. Heterogeneous Esterification from α-Hydroxy Ketone and Alcohols through a Tandem Oxidation Process over a Hydrotalcite-Supported Bimetallic Catalyst. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiuru Bi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gexin Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
36
|
Chen SC, Li N, Tian F, Chai NN, He MY, Chen Q. Mild direct amination of benzoxazoles using interpenetrating Cobalt(II)-based metal-organic framework as an efficient heterogeneous catalyst. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Feng P, Ma G, Zhang T, Wang C. Copper-Catalyzed Direct C−H Bond Arylation of Benzoxazoles with Anilines. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pengju Feng
- College of Chemistry and Materials Science; Jinan University; Guagnzhou 510632 P. R. China
| | - Guojian Ma
- College of Chemistry and Materials Science; Jinan University; Guagnzhou 510632 P. R. China
| | - Tianyu Zhang
- Institute of Chemical Biology Guangzhou Institutes of Biomedicine and Health; Chinese Academy of Sciences; 190 Kaiyuan Avenue Guangzhou 510530 P. R. China
| | - Changwei Wang
- Institute of Chemical Biology Guangzhou Institutes of Biomedicine and Health; Chinese Academy of Sciences; 190 Kaiyuan Avenue Guangzhou 510530 P. R. China
| |
Collapse
|
38
|
Hajnajafi M, Khorshidi A, Gilani AG, Heidari B. Catalytic degradation of malachite green in aqueous solution by porous manganese oxide octahedral molecular sieve (OMS-2) nanorods. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3308-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
39
|
Li B, Li C, Tian L, Zhou J, Huang J, Meng X. Heterogeneous oxidative synthesis of quinazolines over OMS-2 under ligand-free conditions. NEW J CHEM 2018. [DOI: 10.1039/c8nj02551g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OMS-2 is employed to synthesize heterocycles through selective oxidation without the help of ligands.
Collapse
Affiliation(s)
- Bo Li
- Lanzhou Petrochemical Research Center
- PetroChina
- China
| | - Changming Li
- Lanzhou Petrochemical Research Center
- PetroChina
- China
| | - Liang Tian
- Lanzhou Petrochemical Research Center
- PetroChina
- China
| | - Jinbo Zhou
- Lanzhou Petrochemical Research Center
- PetroChina
- China
| | | | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| |
Collapse
|
40
|
|
41
|
Meng X, Wang Y, Chen B, Chen G, Jing Z, Zhao P. OMS-2/H2O2/Dimethyl Carbonate: An Environmentally-Friendly Heterogeneous Catalytic System for the Oxidative Synthesis of Benzoxazoles at Room Temperature. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00315] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xu Meng
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yuanguang Wang
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Baohua Chen
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu Lanzhou, 730000, P. R. China
| | - Gexin Chen
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zhenqiang Jing
- Suzhou Institute of Nano-Tech and Nano-Bionic (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Peiqing Zhao
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|