1
|
Erdemir G, Knysh I, Skonieczny K, Jacquemin D, Gryko DT. Tetracyanoethylene as a Building Block in the π-Expansion of 1,4-Dihydropyrrolo[3,2- b]pyrroles. J Org Chem 2024; 89:15513-15522. [PMID: 39444365 PMCID: PMC11536355 DOI: 10.1021/acs.joc.4c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The outcome of the reaction of tetracyanoethylene with 1,4-dihydropyrrolo[3,2-b]pyrroles (DHPPs) strongly depends on the character of the substituents present at positions 2 and 5. With electron-withdrawing substituents, the reaction does not occur at all, while, in contrast, the presence of electron-donating substituents yields addition-elimination products. When thiazol-2-yl substituents are located at positions 2 and 5, addition occurs at the thiazole ring, rather than of the DHPP core. In cases where very electron-rich heterocycles are present at positions 2 and 5, a second addition occurs followed by aromatization, leading to the formation of an additional benzene ring bridging two heterocyclic scaffolds. The reaction occurs only at one site since the presence of the strongly electron-withdrawing tricyanoethylene group has a profound impact on electron density at the remaining free position 6. The DHPPs possessing a tricyanoethylene group are strongly polarized and thus enable a push-pull system showing red-shifted absorption and negligible fluorescence. In contrast, dyes possessing a 1,2-dicyanobenzene moiety exhibit strong emission bathochromically shifted by over 100 nm compared to parent 1,4-dihydrotetraarylpyrroles[3,2-b]pyrroles (TAPPs). Computational studies shed light on the evolution of the photophysical properties as a function of the substitution pattern of the final systems.
Collapse
Affiliation(s)
- Guler
Yagiz Erdemir
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka, 01-224 Warsaw, Poland
- Department
of Chemistry, Faculty of Science, Gazi University, Ankara 06560, Turkey
| | - Iryna Knysh
- CNRS,
CEISAM UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Kamil Skonieczny
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka, 01-224 Warsaw, Poland
| | - Denis Jacquemin
- CNRS,
CEISAM UMR 6230, Nantes Université, F-44000 Nantes, France
- Institut
Universitaire de France, 75005 Paris, France
| | - Daniel T. Gryko
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka, 01-224 Warsaw, Poland
| |
Collapse
|
2
|
Rühe J, Vinod K, Hoh H, Shoyama K, Hariharan M, Würthner F. Guest-Mediated Modulation of Photophysical Pathways in a Coronene Bisimide Cyclophane. J Am Chem Soc 2024. [PMID: 39264316 DOI: 10.1021/jacs.4c08479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The properties and functions of chromophores utilized by nature are strongly affected by the environment formed by the protein structure in the cells surrounding them. This concept is transferred here to host-guest complexes with the encapsulated guests acting as an environmental stimulus. A new cyclophane host based on coronene bisimide is presented that can encapsulate a wide variety of planar guest molecules with binding constants up to (4.29 ± 0.32) × 1010 M-1 in chloroform. Depending on the properties of the chosen guest, the excited state deactivation of the coronene bisimide chromophore can be tuned by the formation of host-guest complexes toward fluorescence, exciplex formation, charge separation, room-temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). The photophysical processes were investigated by UV/vis absorption, emission, and femto- and nanosecond transient absorption spectroscopy. To enhance the TADF, two different strategies were used by employing suitable guests: the reduction of the singlet-triplet gap by exciplex formation and the external heavy atom effect. Altogether, by using supramolecular host-guest complexation, a versatile multimodal chromophore system is achieved with the coronene bisimide cyclophane.
Collapse
Affiliation(s)
- Jessica Rühe
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kavya Vinod
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Hanna Hoh
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
3
|
Garain S, Shoyama K, Ginder LM, Sárosi M, Würthner F. The Delayed Box: Biphenyl Bisimide Cyclophane, a Supramolecular Nano-environment for the Efficient Generation of Delayed Fluorescence. J Am Chem Soc 2024; 146:22056-22063. [PMID: 39047068 PMCID: PMC11311229 DOI: 10.1021/jacs.4c07730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Activating delayed fluorescence emission in a dilute solution via a non-covalent approach is a formidable challenge. In this report, we propose a strategy for efficient delayed fluorescence generation in dilute solution using a non-covalent approach via supramolecularly engineered cyclophane-based nanoenvironments that provide sufficient binding strength to π-conjugated guests and that can stabilize triplet excitons by reducing vibrational dissipation and lowering the singlet-triplet energy gap for efficient delayed fluorescence emission. Toward this goal, a novel biphenyl bisimide-derived cyclophane is introduced as an electron-deficient and efficient triplet-generating host. Upon encapsulation of various carbazole-derived guests inside the nanocavity of this cyclophane, emissive charge transfer (CT) states close to the triplet energy level of the biphenyl bisimide are generated. The experimental results of host-guest studies manifest high association constants up to 104 M-1 as the prerequisite for inclusion complex formation, the generation of emissive CT states, and triplet-state stabilization in a diluted solution state. By means of different carbazole guest molecules, we could realize tunable delayed fluorescence emission in this carbazole-encapsulated biphenyl bisimide cyclophane in methylcyclohexane/carbon tetrachloride solutions with a quantum yield (QY) of up to 15.6%. Crystal structure analyses and solid-state photophysical studies validate the conclusions from our solution studies and provide insights into the delayed fluorescence emission mechanism.
Collapse
Affiliation(s)
- Swadhin Garain
- Institut
für Organische Chemie, Universität
Würzburg, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut
für Organische Chemie, Universität
Würzburg, 97074 Würzburg, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, 97074 Würzburg, Germany
| | - Lea-Marleen Ginder
- Institut
für Organische Chemie, Universität
Würzburg, 97074 Würzburg, Germany
| | - Menyhárt Sárosi
- Institut
für Organische Chemie, Universität
Würzburg, 97074 Würzburg, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut
für Organische Chemie, Universität
Würzburg, 97074 Würzburg, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Lama B, Sarma M. Ultrafast Hot Exciton Nonadiabatic Excited-State Dynamics in Green Fluorescent Protein Chromophore Analogue. J Phys Chem B 2024; 128:6786-6796. [PMID: 38959128 DOI: 10.1021/acs.jpcb.4c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The ultrafast high-energy nonadiabatic excited-state dynamics of the benzylidenedimethylimidazolinone chromophore dimer has been investigated using an electronic structure method coupled with on-the-fly quantitative wave function analysis to gain insight into the photophysics of hot excitons in biological systems. The dynamical simulation provides a rationalization of the behavior of the exciton in a dimer after the photoabsorption of light to higher-energy states. The results suggest that hot exciton localization within the manifold of excited states is caused by the hindrance of torsional rotation due to imidazolinone (I) or phenolate (P) bonds i.e., ΦI- or ΦP-dihedral rotation, in the monomeric units of a dimer. This hindrance arises due to weak π-π stacking interaction in the dimer, resulting in an energetically uphill excited-state barrier for ΦI- and ΦP-twisted rotation, impeding the isomerization process in the chromophore. Thus, this study highlights the potential impact of the weak π-π interaction in regulating the photodynamics of the green fluorescent protein chromophore derivatives.
Collapse
Affiliation(s)
- Bittu Lama
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Gazdag T, Meiszter E, Mayer PJ, Holczbauer T, Ottosson H, Maurer AB, Abrahamsson M, London G. An Exploration of Substituent Effects on the Photophysical Properties of Monobenzopentalenes. Chemphyschem 2024; 25:e202300737. [PMID: 38284145 DOI: 10.1002/cphc.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Monobenzopentalenes have received moderate attention compared to dibenzopentalenes, yet their accessibility as stable, non-symmetric structures with diverse substituents could be interesting for materials applications, including molecular photonics. Recently, monobenzopentalene was considered computationally as a potential chromophore for singlet fission (SF) photovoltaics. To advance this compound class towards photonics applications, the excited state energetics must be characterized, computationally and experimentally. In this report we synthesized a series of stable substituted monobenzopentalenes and provided the first experimental exploration of their photophysical properties. Structural and opto-electronic characterization revealed that all derivatives showed 1H NMR shifts in the olefinic region, bond length alternation in the pentalene unit, low-intensity absorptions reflecting the ground-state antiaromatic character and in turn the symmetry forbidden HOMO-to-LUMO transitions of ~2 eV and redox amphotericity. This was also supported by computed aromaticity indices (NICS, ACID, HOMA). Accordingly, substituents did not affect the fulfilment of the energetic criterion of SF, as the computed excited-state energy levels satisfied the required E(S1)/E(T1)>2 relationship. Further spectroscopic measurements revealed a concentration dependent quenching of the excited state and population of the S2 state on the nanosecond timescale, providing initial evidence for unusual photophysics and an alternative entry point for singlet fission with monobenzopentalenes.
Collapse
Affiliation(s)
- Tamás Gazdag
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest, 1117, Hungary
| | - Enikő Meiszter
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| | - Péter J Mayer
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala, 751 20, Sweden
| | - Tamás Holczbauer
- Chemical Crystallography Research Laboratory and Stereochemistry Research Group, Institute for Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Henrik Ottosson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala, 751 20, Sweden
| | - Andrew B Maurer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Maria Abrahamsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Gábor London
- MTA TTK Lendület Functional Organic Materials Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Magyar tudósok krt. 2, Hungary
| |
Collapse
|
6
|
Chowdhury M, Turner JA, Cappello D, Hajjami M, Hudson RHE. Chimeric GFP-uracil based molecular rotor fluorophores. Org Biomol Chem 2023; 21:9463-9470. [PMID: 37997774 DOI: 10.1039/d3ob01539d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Uracil has been modified at the 5-position to derive a small library of nucleobase-chromophores which were inspired by green fluorescent protein (GFP). The key steps in the syntheses were Erlenmeyer azlactone synthesis followed by amination by use of hexamethyl disilazane (HMDS) to produce the imidazolinone derivatives. The uracil analogues displayed emission in the green region of visible spectrum and exhibited microenvironmental sensitivity exemplified by polarity-based solvatochromism and viscosity-dependent emission enhancement. Solid-state quantum yields of approximately 0.2 and solvent dependent emission wavelengths beyond 500 nm were observed. Select analogues were incorporated into peptide nucleic acid (PNA) strands which upon duplex formation with DNA showed good response ranging from a turn-off of fluorescence in presence of an opposing mismatched residue to a greater than 3-fold turn-on of fluorescence upon binding to fully complementary DNA strand.
Collapse
Affiliation(s)
- Mria Chowdhury
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| | - Julia A Turner
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| | - Daniela Cappello
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| | - Maryam Hajjami
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. rhhudson@uwo
| |
Collapse
|
7
|
Chatterjee T, Mandal M, Mardanya S, Singh M, Saha A, Ghosh S, Mandal PK. meta-Fluorophores: an uncharted ocean of opportunities. Chem Commun (Camb) 2023; 59:14370-14386. [PMID: 37965696 DOI: 10.1039/d3cc04182d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
meta-Fluorophores (MFs) are unique ultra-light (in terms of molecular weight (MW)) fluorophores exhibiting luminescence with a wide colour gamut ranging from blue to the NIR. Single benzenic MFs are easy to synthesize, are quite bright (with photoluminescence quantum yield (PLQY) as high as 63%) and exhibit very large Stokes shift (as high as 260 nm (8965 cm-1)), with large solvatochromic shift (as high as 175 nm), and very long excited-state-lifetime (as high as 26 ns) for such ultra-light fluorophores. An emission maximum of ≥600 nm has been achieved with an MF in a polar medium having a MW of only 177 g mol-1 and in a nonpolar medium having MW of only 255 g mol-1; therefore, a large-sized π-conjugated para-fluorophore is no longer a prerequisite for red/NIR emission. Structurally varied MFs pave the way for creating an ocean of opportunities and are thus promising for replacing para-fluorophores for different applications, ranging from bioimaging to LEDs.
Collapse
Affiliation(s)
- Tanmay Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Mrinal Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Sukumar Mardanya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Manjeev Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Arijit Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Swarnali Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Prasun K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
8
|
Dalmau D, Crespo O, Matxain JM, Urriolabeitia EP. Fluorescence Amplification of Unsaturated Oxazolones Using Palladium: Photophysical and Computational Studies. Inorg Chem 2023. [PMID: 37315074 DOI: 10.1021/acs.inorgchem.3c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Weakly fluorescent (Z)-4-arylidene-5-(4H)-oxazolones (1), ΦPL < 0.1%, containing a variety of conjugated aromatic fragments and/or charged arylidene moieties, have been orthopalladated by reaction with Pd(OAc)2. The resulting dinuclear complexes (2) have the oxazolone ligands bonded as a C^N-chelate, restricting intramolecular motions involving the oxazolone. From 2, a variety of mononuclear derivatives, such as [Pd(C^N-oxazolone)(O2CCF3)(py)] (3), [Pd(C^N-oxazolone)(py)2](ClO4) (4), [Pd(C^N-oxazolone)(Cl)(py)] (5), and [Pd(C^N-oxazolone)(X)(NHC)] (6, 7), have been prepared and fully characterized. Most of complexes 3-6 are strongly fluorescent in solution in the range of wavelengths from green to yellow, with values of ΦPL up to 28% (4h), which are among the highest values of quantum yield ever reported for organometallic Pd complexes with bidentate ligands. This means that the introduction of the Pd in the oxazolone scaffold produces in some cases an amplification of the fluorescence of several orders of magnitude from the free ligand 1 to complexes 3-6. Systematic variations of the substituents of the oxazolones and the ancillary ligands show that the wavelength of emission is tuned by the nature of the oxazolone, while the quantum yield is deeply influenced by the change of ligands. TD-DFT studies of complexes 3-6 show a direct correlation between the participation of the Pd orbitals in the HOMO and the loss of emission through non-radiative pathways. This model allows the understanding of the amplification of the fluorescence and the future rational design of new organopalladium systems with improved properties.
Collapse
Affiliation(s)
- David Dalmau
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Olga Crespo
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jon M Matxain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU and Donostia International Physics Center (DIPC) PK 1072, 20080 Donostia, Euskadi, Spain
| | - Esteban P Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
9
|
Ferreira JRM, Esteves CIC, Marques MMB, Guieu S. Locking the GFP Fluorophore to Enhance Its Emission Intensity. Molecules 2022; 28:molecules28010234. [PMID: 36615428 PMCID: PMC9822164 DOI: 10.3390/molecules28010234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
The Green Fluorescent Protein (GFP) and its analogues have been widely used as fluorescent biomarkers in cell biology. Yet, the chromophore responsible for the fluorescence of the GFP is not emissive when isolated in solution, outside the protein environment. The most accepted explanation is that the quenching of the fluorescence results from the rotation of the aryl-alkene bond and from the Z/E isomerization. Over the years, many efforts have been performed to block these torsional rotations, mimicking the environment inside the protein β-barrel, to restore the emission intensity. Molecule rigidification through chemical modifications or complexation, or through crystallization, is one of the strategies used. This review presents an overview of the strategies developed to achieve highly emissive GFP chromophore by hindering the torsional rotations.
Collapse
Affiliation(s)
- Joana R. M. Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
| | - Cátia I. C. Esteves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
| | - Maria Manuel B. Marques
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Samuel Guieu
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
10
|
Rajbongshi BK, Rafiq S, Bhowmik S, Sen P. Ultrafast Excited State Relaxation of a Model Green Fluorescent Protein Chromophore: Femtosecond Fluorescence and Transient Absorption Study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Szukalski A, Krawczyk P, Sahraoui B, Rosińska F, Jędrzejewska B. A Modified Oxazolone Dye Dedicated to Spectroscopy and Optoelectronics. J Org Chem 2022; 87:7319-7332. [PMID: 35588394 PMCID: PMC9171828 DOI: 10.1021/acs.joc.2c00500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Here we present a
newly synthesized bifunctional organic chromophore
with appealing spectroscopic and nonlinear optical features. The positions
of absorption and emission maxima of the dye vary with increasing
solvent polarity and exhibit positive solvatochromism. The determined
change in the dipole moment upon excitation based on the Bilot and
Kawski theory is 5.94 D, which corresponds to the intermolecular displacement
of a charge equal to 1.24 Å. An investigated organic-based system
represents a significant, repeatable, and stable over time optical
signal modulation in the manner of the refractive index value. Its
magnitude is varied both by optical pumping intensity as well as by
external frequency modulation, which indicates that such system is
an alluring and alternative core unit for optoelectronic devices and
complex networks. Then, the same active system, due to the nonresonant
mechanism of higher harmonics of light inducement, can provide second
and third harmonic signals. According to the introduced laser
line spatial modifications (parallel or perpendicular polarization
directions), it is resulted in output SHG signal with magnitude varied
about 100%. Its magnitude is noticeably small; however, to construct
sensitive optical sensors or infrared indicators, such feature may
guarantee satisfying circumstances.
Collapse
Affiliation(s)
- Adam Szukalski
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Przemysław Krawczyk
- Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, Kurpińskiego 5, Bydgoszcz 85-950, Poland
| | - Bouchta Sahraoui
- Laboratoire MOLTECH-Anjou, Université d'Angers, UFR Sciences, UMR 6200, CNRS, 2 Bd. Lavoisier, Angers Cedex 49045, France
| | - Faustyna Rosińska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, Bydgoszcz 85-326, Poland
| | - Beata Jędrzejewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, Bydgoszcz 85-326, Poland
| |
Collapse
|
12
|
Isci R, Unal M, Kucukcakir G, Gurbuz NA, Gorkem SF, Ozturk T. Triphenylamine/4,4'-Dimethoxytriphenylamine-Functionalized Thieno[3,2- b]thiophene Fluorophores with a High Quantum Efficiency: Synthesis and Photophysical Properties. J Phys Chem B 2021; 125:13309-13319. [PMID: 34807616 DOI: 10.1021/acs.jpcb.1c09448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A wide series of 10 new triphenylamine (TPA)/4,4'-dimethoxytriphenylamine (TPA(OMe)2)-functionalized thieno[3,2-b]thiophene (TT) fluorophores, 4a-e and 5a-e, bearing different electron-donating and electron-withdrawing substituents (-PhCN, -PhF, -PhOMe, -Ph, and -C6H13) at the terminal thienothiophene units were designed and synthesized by the Suzuki coupling reaction. Their optical and electrochemical properties were investigated by experimental and computational studies. Solid-state fluorescent quantum yields were recorded to be from 20 to 69%, and the maximum solution-state quantum efficiency reached 97%. Moreover, the photophysical characterization of the novel chromophores demonstrated a significant Stokes shift, reaching 179 nm with a bathochromic shift. They exhibited tuning color emission from orange to dark blue in solution and showed fluorescence lifetime reaching 4.70 ns. The relationship between triphenylamine (TPA)/4,4'-dimethoxytriphenylamine (TPA(OMe)2)-derived triarylamines and different functional groups on thieno[3,2-b] thiophene units was discussed.
Collapse
Affiliation(s)
- Recep Isci
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Melis Unal
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Gizem Kucukcakir
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Naime A Gurbuz
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Sultan F Gorkem
- Chemistry Department, Eskisehir Technical University, 26470 Eskisehir, Turkey
| | - Turan Ozturk
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.,Chemistry Group Laboratories, TUBITAK UME, 41470 Gebze, Kocaeli, Turkey
| |
Collapse
|
13
|
Tsai MS, Lee CH, Hsiao JC, Sun SS, Yang JS. Solvatochromic Fluorescence of a GFP Chromophore-Containing Organogelator in Solutions and Organogels. J Org Chem 2021; 87:1723-1731. [PMID: 34649423 DOI: 10.1021/acs.joc.1c01911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solvatofluorochromism, a solvation effect on the fluorescence color of an organic dye, is a property generally limited to fluid solutions. We demonstrate herein the concept of solid-state solvatofluorochromism by using an organogelator (1-SG), which consists of a solvatofluorochromic green fluorescence protein (GFP) chromophore (1) and a sugar gelator (SG). While 1-SG could be located in the liquid phase or in the fibrous solid matrix of the SG gel, our results show that the one in the solid matrix but near the liquid interface has superior fluorescence stability and quantum efficiency as well as solvatofluorochromicity than the one in the liquid phase. In addition, the phenomenon of fluorescence turn-on occurs when the gel is formed in protic solvents. These features have been applied to perform multicolor fluorescence patterning, chemical vapor sensing, data encryption and decryption, and real-time fluorescence cell imaging.
Collapse
Affiliation(s)
- Meng-Shiue Tsai
- Department of Chemistry, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei 10617, Taiwan.,Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
| | - Chin-Han Lee
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
| | - Jye-Chian Hsiao
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
| | - Shih-Sheng Sun
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
| | - Jye-Shane Yang
- Department of Chemistry, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
14
|
Sokolov AI, Myasnyanko IN, Baleeva NS, Baranov MS. Convenient and Versatile Synthetic Protocol for Arylidene‐1
H
‐imidazol‐5(4
H
)‐ones. ChemistrySelect 2020. [DOI: 10.1002/slct.202001782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anatolii I. Sokolov
- Institute of Bioorganic ChemistryRussian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Ivan N. Myasnyanko
- Institute of Bioorganic ChemistryRussian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Nadezhda S. Baleeva
- Institute of Bioorganic ChemistryRussian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic ChemistryRussian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
- Pirogov Russian National Russia Research Medical UniversityInstitute of Bioorganic ChemistryRussian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| |
Collapse
|
15
|
Deng H, Yu C, Yan D, Zhu X. Dual-Self-Restricted GFP Chromophore Analogues with Significantly Enhanced Emission. J Phys Chem B 2020; 124:871-880. [PMID: 31928005 DOI: 10.1021/acs.jpcb.9b11329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tremendous gap of fluorescence emission of synthetic green fluorescent protein (GFP) chromophore to the protein itself makes it impossible to use for applications in molecular and cellular imaging. Here, we developed an efficient methodology to enhance the photoluminescence response of synthetic GFP chromophore analogues by constructing dual-self-restricted chromophores. Single self-restricted chromophores were first generated with 2,5-dimethoxy substitution on the aromatic ring, which were further modified with phenyl or 2,5-dimethoxy phenyl to form dual-self-restricted chromophores. These two chromophores showed an obvious solvatofluorochromic color palette across blue to yellow with a maximum emission Stokes shift of 95 nm and dramatically enhanced fluorescence emission in various aprotic solvents, especially in hexane, where the QY reached around 0.6. Importantly, in acetonitrile and dimethyl sulfoxide, the fluorescence QYs of both chromophores were over 0.22, which were the highest reported so far in high polar organic solvents. Meanwhile, the fluorescence lifetimes also improved obviously with the maximum of around 4.5 ns. Theoretical calculations revealed a more favorable Mülliken atomic charge translocation over the double-bond bridge and illustrated much higher energy barriers for the Z/E photoisomerization together with larger bond orders compared with the GFP core chromophore, p-HBDI. Our work significantly improved the fluorescence emission of synthetic GFP chromophore analogues in polar solvents while reserved the multicolor emitting function, providing a solid molecular motif for engineering high-performance fluorescent probes.
Collapse
Affiliation(s)
- Hongping Deng
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| |
Collapse
|
16
|
Kotagiri R, Deng Z, Xu W, Cai Q. Stereospecific Synthesis of ( E)-5-Tetrasubstituted-ylidene-3,5-dihydro-4 H-imidazol-4-ones. Org Lett 2019; 21:3946-3949. [PMID: 31140817 DOI: 10.1021/acs.orglett.9b01063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stereospecific synthesis of ( E)-5-tetrasubstituted-ylidene-3,5-dihydro-4 H-imidazol-4-one derivatives is demonstrated through a cascade process by combination of a Michael addition and Boulton-Katritzky rearrangement. The method provides a simple and efficient approach for the synthesis of ( E)-5-tetrasubstituted-ylidene-3,5-dihydro-4 H-imidazol-4-ones from the reactions of N-(isoxazol-3-yl)-propiolamides or N-(1,2,4-oxadiazo-3-yl) propiolamides with N or C nucleophiles.
Collapse
Affiliation(s)
- Rajendraprasad Kotagiri
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy , Jinan University , No 601 Huangpu Avenue West , Guangzhou 510632 , China
| | - Zhuoji Deng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy , Jinan University , No 601 Huangpu Avenue West , Guangzhou 510632 , China
| | - Wei Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy , Jinan University , No 601 Huangpu Avenue West , Guangzhou 510632 , China
| | - Qian Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy , Jinan University , No 601 Huangpu Avenue West , Guangzhou 510632 , China
| |
Collapse
|
17
|
Katayama K, Kawajiri I, Okano Y, Nishida J, Kawase T. Highly Polarized Benzo[
k
]fluoranthene Imide Derivatives: Large Solvatofluorochromism, Dual Fluorescence and Aggregation Induced Emission Associated with Excited‐State Intramolecular Charge Transfer. Chempluschem 2019; 84:722-729. [DOI: 10.1002/cplu.201900067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kohji Katayama
- Graduate School of EngineeringUniversity of Hyogo 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Ikumi Kawajiri
- Graduate School of EngineeringUniversity of Hyogo 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Yotaro Okano
- Graduate School of EngineeringUniversity of Hyogo 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Jun‐ichi Nishida
- Graduate School of EngineeringUniversity of Hyogo 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Takeshi Kawase
- Graduate School of EngineeringUniversity of Hyogo 2167 Shosha, Himeji Hyogo 671-2280 Japan
| |
Collapse
|
18
|
Singh A, Samanta D, Boro M, Maji TK. Gfp chromophore integrated conjugated microporous polymers: topological and ESPT effects on emission properties. Chem Commun (Camb) 2019; 55:2837-2840. [PMID: 30768086 DOI: 10.1039/c9cc00357f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A metal free topological approach is demonstrated to mimic the photophysical properties of natural gfp by synthesizing two gfp chromophore integrated conjugated microporous polymers (o-HBDI-TEB-CMP and o-MBDI-TEB-CMP). Interestingly, owing to the structural rigidity, the emission (λem = 515 nm) and excited state lifetime (4.1 ns) of hydroxy substituted o-HBDI-TEB-CMP are found to be similar to the natural gfp. The crucial role of the -OH group for the green emission is further supported by -OMe substituted o-MBDI-TEB-CMP (λem = 440 nm) and also validated theoretically.
Collapse
Affiliation(s)
- Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | | | | | | |
Collapse
|
19
|
Lin CJ, Zeininger L, Savagatrup S, Swager TM. Morphology-Dependent Luminescence in Complex Liquid Colloids. J Am Chem Soc 2019; 141:3802-3806. [PMID: 30785273 DOI: 10.1021/jacs.8b13215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complex liquid colloids hold great promise as transducers in sensing applications as a result of their tunable morphology and intrinsic optical properties. Herein, we introduce meta-amino substituted green fluorescence protein chromophore (GFPc) surfactants that localize at the organic-water interface of complex multiphase liquid colloids. The meta-amino GFPc exhibits hydrogen-bonding (HB) mediated fluorescence quenching, and are nearly nonemissive in the presence of protic solvents. We demonstrate morphology-dependent fluorescence of complex liquid colloids and investigate the interplay between GFPc surfactants and other simple surfactants. This environmentally responsive surfactant allows us to observe morphological changes of complex emulsions in randomized orientations. We demonstrate utility with an enzyme activity based fluorescence "turn-ON" scheme. The latter employs an oligopeptide-linked GFPc that functions as both a surfactant and trypsin target. The cleavage of hydrophilic peptide results in a morphology change and ultimately a fluorescence turn-on. Fluorescent complex colloids represent a new approach for biosensing in liquid environments.
Collapse
Affiliation(s)
- Che-Jen Lin
- Department of Chemistry and Institute for Soldier Nanotechnologies , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lukas Zeininger
- Department of Chemistry and Institute for Soldier Nanotechnologies , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Suchol Savagatrup
- Department of Chemistry and Institute for Soldier Nanotechnologies , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Timothy M Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
20
|
Schramm S, Weiß D. Fluorescent heterocycles: Recent trends and new developments. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Renault K, Renard PY, Sabot C. Detection of Biothiols with a Fast-Responsive and Water-Soluble Pyrazolone-Based Fluorogenic Probe. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kévin Renault
- Normandie Univ; CNRS; UNIROUEN, INSA Rouen; COBRA (UMR 6014); 76000 Rouen France
| | - Pierre-Yves Renard
- Normandie Univ; CNRS; UNIROUEN, INSA Rouen; COBRA (UMR 6014); 76000 Rouen France
| | - Cyrille Sabot
- Normandie Univ; CNRS; UNIROUEN, INSA Rouen; COBRA (UMR 6014); 76000 Rouen France
| |
Collapse
|
22
|
Ishikawa H, Katayama K, Nishida JI, Kitamura C, Kawase T. Fluoranthene and its π-extended diimides: Construction of new electron acceptors. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Zaitseva SO, Golodukhina SV, Baleeva NS, Levina EA, Smirnov AY, Zagudaylova MB, Baranov MS. Azidoacetic Acid Amides in the Synthesis of Substituted Arylidene‐1‐
H
‐imidazol‐5‐(4
H
)‐ones. ChemistrySelect 2018. [DOI: 10.1002/slct.201801349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Snizhana O. Zaitseva
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Svetlana V. Golodukhina
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Nadezhda S. Baleeva
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Evgenia A. Levina
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Marina B. Zagudaylova
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1 117997 Moscow Russia
| |
Collapse
|
24
|
Ermakova YG, Sen T, Bogdanova YA, Smirnov AY, Baleeva NS, Krylov AI, Baranov MS. Pyridinium Analogues of Green Fluorescent Protein Chromophore: Fluorogenic Dyes with Large Solvent-Dependent Stokes Shift. J Phys Chem Lett 2018; 9:1958-1963. [PMID: 29589942 DOI: 10.1021/acs.jpclett.8b00512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Novel fluorogenic dyes based on the GFP chromophore are developed. The compounds contain a pyridinium ring instead of phenolate and feature large Stokes shifts and solvent-dependent variations in the fluorescence quantum yield. Electronic structure calculations explain the trends in solvatochromic behavior in terms of the increase of the dipole moment upon excited-state relaxation in polar solvents associated with the changes in bonding pattern in the excited state. A unique combination of such optical characteristics and lipophilic properties enables using one of the new dyes for imaging the membrane structure of endoplasmic reticulum. An extremely high photostability (due to a dynamic exchange between the free and absorbed states) and selectivity make this compound a promising label for this type of cellular organelles.
Collapse
Affiliation(s)
- Yulia G Ermakova
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1 , 117997 Moscow , Russia
- European Molecular Biology Laboratory , 69117 Heidelberg , Germany
| | - Tirthendu Sen
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Yulia A Bogdanova
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
| | - Anna I Krylov
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1 , 117997 Moscow , Russia
| |
Collapse
|
25
|
Yamamoto Y, Yoshida M, Morii T, Nishida JI, Kitamura C, Kawase T. Synthesis and Properties of a Decacyclene Monoimide and a Naphthalimide Derivative as Three-Dimensional Acceptor-Donor-Acceptor Systems. Chem Asian J 2018; 13:790-798. [DOI: 10.1002/asia.201701668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/01/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Yuma Yamamoto
- Graduate School of Engineering; University of Hyogo; 2167 Shosha Himeji Hyogo 671-2280 Japan
| | - Miu Yoshida
- Graduate School of Engineering; University of Hyogo; 2167 Shosha Himeji Hyogo 671-2280 Japan
| | - Takuya Morii
- Graduate School of Engineering; University of Hyogo; 2167 Shosha Himeji Hyogo 671-2280 Japan
| | - Jun-ichi Nishida
- Graduate School of Engineering; University of Hyogo; 2167 Shosha Himeji Hyogo 671-2280 Japan
| | - Chitoshi Kitamura
- School of Engineering; University of Shiga Prefecture; 2500 Hassaka-cho Hikone Shiga 522-8533 Japan
| | - Takeshi Kawase
- Graduate School of Engineering; University of Hyogo; 2167 Shosha Himeji Hyogo 671-2280 Japan
| |
Collapse
|
26
|
Triarylamines with branched multi-pyridine groups: modulation of emission properties by structural variation, solvents, and tris(pentafluorophenyl)borane. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9202-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Meti P, Gong YD. Unveiling the photophysical and morphological properties of an acidochromic thiophene flanked dipyrrolopyrazine-based chromophore for optoelectronic application. RSC Adv 2018; 8:2004-2014. [PMID: 35542564 PMCID: PMC9077264 DOI: 10.1039/c7ra12527e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/24/2017] [Indexed: 11/21/2022] Open
Abstract
A series of dipyrrolopyrazine (DPP) based chromophores featuring thiophene and varied donor (N,N-dimethylamine, NH2, OMe) and acceptor (CF3, CN, NO2) appendages have been synthesized. The structures and properties of the chromophores were investigated by absorption spectroscopy, electrochemistry, differential scanning calorimetry, and thermogravimetric analysis. X-ray crystallographic analysis indicates a planar geometry for the molecule 7g. Surface morphological studies reveal the formation of microrods and nanorods. The acidochromic behavior of the chromophore which shows a prominent red-shift in the absorption spectra owing to the protonation of the pyrazine segment provides a valuable opportunity to assess the sensory response. Acid dependent spectral changes could be successfully applied to detect pH in biological fluids and acid impurities in solvents. A series of dipyrrolopyrazine (DPP) based chromophores featuring thiophene and varied donor (N,N-dimethylamine, NH2, OMe) and acceptor (CF3, CN, NO2) appendages have been synthesized.![]()
Collapse
Affiliation(s)
- Puttavva Meti
- Innovative Drug Library Research Center
- Department of Chemistry
- College of Science
- Dongguk University
- Seoul 04620
| | - Young-Dae Gong
- Innovative Drug Library Research Center
- Department of Chemistry
- College of Science
- Dongguk University
- Seoul 04620
| |
Collapse
|