1
|
Liu L, Xiang C, Pan C, Yu JT. Photocatalytic synthesis of polyfluoroalkylated dihydropyrazoles and tetrahydropyridazines. Chem Commun (Camb) 2024; 60:10764-10767. [PMID: 39248658 DOI: 10.1039/d4cc03384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A photocatalytic trifluoromethylation/cyclization reaction of N-allyl and N-homoallyl aldehyde hydrazones with trifluoromethyl thianthrenium triflate was developed for the synthesis of trifluoromethylated dihydropyrazoles and tetrahydropyridazines. Besides, PhI(O2CCHF2)2 was employed to realize the construction of difluoromethylated dihydropyrazoles and tetrahydropyridazines. These protocols exhibit a broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Chengli Xiang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
2
|
Chen D, Jiang J, Wan J. Advances in the Transition Metal‐Free C‐H Trifluoromethylation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Demao Chen
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jianwen Jiang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jie‐Ping Wan
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
3
|
Aryal P, Rafiu R, Reddy VP. Acetic Acid-Promoted Photoredox Catalyzed Trifluoromethylation of Aldehyde Hydrazones. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Kumar Ghosh A, Neogi S, Das KK, Hajra A. Organocatalytic Oxidative C-H Amination of Aldehyde Hydrazones with Azoles at Ambient Temperature. J Org Chem 2022; 87:5682-5689. [PMID: 35471944 DOI: 10.1021/acs.joc.1c03146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An efficient, metal-free, and direct oxidative amination of aldehyde-derived hydrazones with azoles has been developed using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone as an organocatalyst at ambient temperature. This protocol provides a wide range of aminated hydrazone derivatives in a step and atom economical fashion. The reaction possibly follows a radical mechanism.
Collapse
Affiliation(s)
- Asim Kumar Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Sukanya Neogi
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Krishna Kanta Das
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
5
|
Liu M, Luo ZX, Li T, Xiong DC, Ye XS. Electrochemical Trifluoromethylation of Glycals. J Org Chem 2021; 86:16187-16194. [PMID: 34435785 DOI: 10.1021/acs.joc.1c01318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbohydrates play essential roles in various physiological and pathological processes. Trifluoromethylated compounds have wide applications in the field of medicinal chemistry. Herein, we report a practical and efficient trifluoromethylation of glycals by an electrochemical approach using CF3SO2Na as the trifluoromethyl source and MnBr2 as the redox mediator. A variety of trifluoromethylated glycals bearing different protective groups are obtained in 60-90% yields with high regioselectivity. The successful capture of a CF3 radical indicates that a radical mechanism is involved in this reaction.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhao-Xiang Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Yu Q, Liu Y, Wan JP. Metal-free C(sp2)-H perfluoroalkylsulfonylation and configuration inversion: Stereoselective synthesis of α-perfluoroalkylsulfonyl E-enaminones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Shen J, Xu J, He L, Liang C, Li W. Application of Langlois’ reagent (NaSO2CF3) in C–H functionalisation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Mehta J, Aryal P, Prakash Reddy V. Cu‐Catalyzed C(sp
2
−H)‐Trifluoromethylation of Aldehyde Hydrazones with Langlois Reagent. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jatin Mehta
- Department of Chemistry Missouri University of Science and Technology Rolla MO 65409 USA
| | - Puspa Aryal
- Department of Chemistry Missouri University of Science and Technology Rolla MO 65409 USA
| | - V. Prakash Reddy
- Department of Chemistry Missouri University of Science and Technology Rolla MO 65409 USA
| |
Collapse
|
9
|
Li Y, Huang Z, Mo G, Jiang W, Zheng C, Feng P, Ruan Z. Direct Electrochemical Synthesis of
Sulfur‐Containing
Triazolium Inner Salts. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000586] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yueheng Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Zhixing Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Guangquan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Wei Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Chengwei Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Pengju Feng
- Department of Chemistry, Jinan University Guangzhou Guangdong 510632 China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| |
Collapse
|
10
|
Han Z, Zhang C. Fluorination and Fluoroalkylation Reactions Mediated by Hypervalent Iodine Reagents. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000750] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhou‐Zhou Han
- School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Cheng‐Pan Zhang
- School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| |
Collapse
|
11
|
Pianoski KE, Poletto J, Vieira da Silva MJ, Ascencio Camargo JN, Jacomini AP, Gonçalves DS, Back DF, Moura S, Rosa FA. 1,2-Addition to trifluoromethylated β-enamino diketones: regioselective synthesis of trifluoromethyl-containing azomethine pyrazoles and isoxazoles. Org Biomol Chem 2020; 18:2524-2537. [DOI: 10.1039/d0ob00319k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Trifluoromethylated β-enamino diketones undergo type 1,2-addition leading to regioselective synthesis of trifluoromethylated azoles containing an azomethine group.
Collapse
Affiliation(s)
| | - Julia Poletto
- Departamento de Química
- Universidade Estadual de Maringá (UEM)
- Maringá
- Brazil
| | | | | | | | | | - Davi Fernando Back
- Departamento de Química
- Universidade Federal de Santa Maria (UFSM)
- 97110-970 - Santa Maria
- Brazil
| | - Sidnei Moura
- Instituto de Biotecnologia
- Universidade de Caxias do Sul (UCS)
- Caxias do Sul
- Brazil
| | | |
Collapse
|
12
|
Supranovich VI, Chernov GN, Levin VV, Dilman AD. Photoredox Fluoroalkylation of Arylidene and Alkylidene Amidrazones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Grigory N. Chernov
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russian Federation
- Department of Chemistry; Moscow State University; Leninskie Gory 1-3 119991 Moscow Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
13
|
Wang L, Zhao J, Sun Y, Zhang HY, Zhang Y. A Catalyst-Free Minisci-Type Reaction: the C-H Alkylation of Quinoxalinones with Sodium Alkylsulfinates and Phenyliodine(III) Dicarboxylates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901266] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liping Wang
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Yuting Sun
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| |
Collapse
|
14
|
Zhao Z, Ma KCY, Legault CY, Murphy GK. Denitrogenative Hydrotrifluoromethylation of Benzaldehyde Hydrazones: Synthesis of (2,2,2-Trifluoroethyl)arenes. Chemistry 2019; 25:11240-11245. [PMID: 31276254 DOI: 10.1002/chem.201902818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/03/2019] [Indexed: 12/20/2022]
Abstract
Reacting hydrazones of arylaldehydes with Togni's CF3 -benziodoxolone reagent, in the presence of potassium hydroxide and cesium fluoride, induces a denitrogenative hydrotrifluoromethylation event to produce (2,2,2-trifluoroethyl)arenes. This novel reaction was tolerant to many electronically-diverse functional groups and substitution patterns, as well as naphthyl- and heteroaryl-derived substrates. Advantages of this process include the easy access to hydrazone precursors on a large scale, speed and operational simplicity, and being transition metal-free.
Collapse
Affiliation(s)
- Zhensheng Zhao
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L3G1, Canada
| | - Kevin C Y Ma
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L3G1, Canada
| | - Claude Y Legault
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, Québec, J1K2R1, Canada
| | - Graham K Murphy
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L3G1, Canada
| |
Collapse
|
15
|
Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chem Rev 2019; 119:8701-8780. [PMID: 31243998 PMCID: PMC6661881 DOI: 10.1021/acs.chemrev.9b00111] [Citation(s) in RCA: 513] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Organosulfur compounds have long played a vital role in organic chemistry and in the development of novel chemical structures and architectures. Prominent among these organosulfur compounds are those involving a sulfur(IV) center, which have been the subject of countless investigations over more than a hundred years. In addition to a long list of textbook sulfur-based reactions, there has been a sustained interest in the chemistry of organosulfur(IV) compounds in recent years. Of particular interest within organosulfur chemistry is the ease with which the synthetic chemist can effect a wide range of transformations through either bond formation or bond cleavage at sulfur. This review aims to cover the developments of the past decade in the chemistry of organic sulfur(IV) molecules and provide insight into both the wide range of reactions which critically rely on this versatile element and the diverse scaffolds that can thereby be synthesized.
Collapse
Affiliation(s)
- Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Immo Klose
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Rik Oost
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - James Neuhaus
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
16
|
Wang L, Zhang Y, Li F, Hao X, Zhang HY, Zhao J. Direct C−H Trifluoromethylation of Quinoxalin-2(1H
)-ones under Transition-Metal-Free Conditions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800863] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liping Wang
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 People's Republic of China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 People's Republic of China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization; Hebei University of Technology; Tianjin 300130 People's Republic of China
| | - Fanfan Li
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 People's Republic of China
| | - Xinyu Hao
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 People's Republic of China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 People's Republic of China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology; Hebei University of Technology; Tianjin 300130 People's Republic of China
| |
Collapse
|
17
|
Wang Q, Shi P, Zeng R. Copper(i) reagent-promoted hydroxytrifluoromethylation of enamides: flexible synthesis of substituted-3-hydroxy-2-aryl-3-(2,2,2-trifluoro-1-arylethyl)isoindolin-1-one. RSC Adv 2018; 8:25961-25965. [PMID: 35541984 PMCID: PMC9082868 DOI: 10.1039/c8ra04088e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023] Open
Abstract
A novel CuBr-catalyzed hydroxytrifluoromethylation reaction was investigated. Substituted 3-benzylidene-2-arylisoindolin-1-ones was reacted with sodium trifluoromethanesulfinate to afford substituted-3-hydroxy-2-aryl-3-(2,2,2-trifluoro-1-arylethyl)isoindolin-1-one. The reaction proceeded at 25 °C in air atmosphere in the absence of base and ligands. Our results indicate that trifluoromethyl free radical tends to attack a double bond rather than aryl in this reaction.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Peng Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Runsheng Zeng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
18
|
Mondal S, Samanta S, Hajra A. Synthesis of Triazolium Inner Salts by Thiocyanation of Aldehyde-Derived Hydrazones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Susmita Mondal
- Department of Chemistry; Visva-Bharati (A Central University); 731235 Santiniketan West Bengal India
| | - Sadhanendu Samanta
- Department of Chemistry; Visva-Bharati (A Central University); 731235 Santiniketan West Bengal India
| | - Alakananda Hajra
- Department of Chemistry; Visva-Bharati (A Central University); 731235 Santiniketan West Bengal India
| |
Collapse
|
19
|
Prieto A, Bouyssi D, Monteiro N. Radical-Mediated Formal C(sp2
)-H Functionalization of Aldehyde-Derived N
,N
-Dialkylhydrazones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Alexis Prieto
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Univ Lyon; Université Claude Bernard Lyon 1; 69622 Villeurbanne France
| | - Didier Bouyssi
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Univ Lyon; Université Claude Bernard Lyon 1; 69622 Villeurbanne France
| | - Nuno Monteiro
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Univ Lyon; Université Claude Bernard Lyon 1; 69622 Villeurbanne France
| |
Collapse
|
20
|
Xu P, Li W, Xie J, Zhu C. Exploration of C-H Transformations of Aldehyde Hydrazones: Radical Strategies and Beyond. Acc Chem Res 2018; 51:484-495. [PMID: 29359909 DOI: 10.1021/acs.accounts.7b00565] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The chemistry of hydrazones has gained great momentum due to their involvement throughout the evolution of organic synthesis. Herein, we discuss the tremendous developments in both the methodology and application of hydrazones. Hydrazones can be recognized not only as synthetic equivalents to aldehydes and ketones but also as versatile synthetic building blocks. Consequently, they can participate in a range of practical synthetic transformations. Furthermore, hydrazone derivatives display a broad array of biological activities and have been widely applied as pharmaceuticals. Owing to the weak directing group effect of simple aldehydes and ketones in C-H bond functionalizations, the C-H bond functionalizations of hydrazones that have been developed in the past five years represent a significant step forward. These novel transformations open a new door to a broader library of functionalized and complex small molecules. Moreover, a wide range of biologically important N-heterocycles (dihydropyrazoles, pyrazoles, indazoles, cinnolines, etc.) can be efficiently synthesized in an atom- and step-economical manner through single, double, or triple C-H bond functionalizations of hydrazones. Both radical C-H functionalizations and transition-metal-catalyzed directing-group strategies have enhanced the synthetic utility of hydrazones in the chemical community because these strategies solve the long-standing challenge of C-H functionalizations adjacent to aldehydes and ketones. We began this study based on our ongoing interest in visible-light photoredox catalysis. Visible-light photoredox catalysis has become a powerful tool in contemporary synthetic chemistry due to its remarkable advantages in sustainability and use of radical chemistry. By exploiting a photoredox-catalyzed aminyl radical polar crossover (ARPC) strategy, we successfully achieved visible-light-induced C(sp2)-H difluoroalkylation, trifluoromethylation, and perfluoroalkylation of aldehyde-derived hydrazones. This intriguing result was later applied in the C(sp2)-H amination of hydrazones and a cascade cyclization reaction for the synthesis of polycyclic compounds. Encouraged by this redox-neutral C-H functionalization of aldehyde hydrazones, we extended the oxidative C-H/P-H cross-coupling method, which represents a novel and efficient method for the synthesis of α-iminophosphine oxides. Furthermore, an elegant [3 + 2] cycloaddition of azides and aldehyde hydrazones for the synthesis of functionalized tetrazoles was advantageously developed during our investigation of the oxidative C(sp2)-H azidation of aldehyde hydrazones with TMSN3. The sequential C(sp2)-H/C(sp3)-H bond functionalization of aldehyde-derived hydrazones with simple 2,2-dibromo-1,3-dicarbonyls was achieved by employing relay photoredox catalysis, and it provides a novel method of accessing bioactive fused dihydropyrazole derivatives. The notable feature of this approach was further reflected in the formal [4 + 1] annulation of aldehyde-derived N-tetrahydroisoquinoline hydrazones with 2-bromo-1,3-dicarbonyls. To complement these radical C-H functionalization strategies, we recently applied a directing-group strategy in the Rh-catalyzed C(aldehyde)-H functionalization of aldehyde-derived hydrazones for the synthesis of distinctive and bioactive 1H-indazole scaffolds. In summary, this Account presents recent contributions to the exploration, development, mechanistic insights, and synthetic applications of C-H bond functionalizations of aldehyde hydrazones.
Collapse
Affiliation(s)
- Pan Xu
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Weipeng Li
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jin Xie
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Chengjian Zhu
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|
21
|
Xu X, Zhang J, Xia H, Wu J. C(sp2)–H functionalization of aldehyde-derived hydrazones via a radical process. Org Biomol Chem 2018; 16:1227-1241. [DOI: 10.1039/c8ob00056e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review is focused on the recent advances in the C(sp2)–H functionalization of aldehyde-derived hydrazones via a radical process. Diverse substituted hydrazones including N-heterocycles are afforded under mild conditions with excellent selectivities. In general, an aminyl radical as the key intermediate is involved during the reaction process.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Biochemistry and Molecular Biology
- Zhejiang University School of Medicine
- Hangzhou 310058
- China
| | - Jun Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Hongguang Xia
- Department of Biochemistry and Molecular Biology
- Zhejiang University School of Medicine
- Hangzhou 310058
- China
| | - Jie Wu
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|