1
|
Patel KI, Saha N, Dhameliya TM, Chakraborti AK. Recent advancements in the quest of benzazoles as anti-Mycobacterium tuberculosis agents. Bioorg Chem 2025; 155:108093. [PMID: 39764919 DOI: 10.1016/j.bioorg.2024.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
Tuberculosis (TB) remains a global health challenge, claiming numerous lives each year, despite recent advancements in drug discovery and treatment strategies. Current TB treatment typically involves long-duration chemotherapy regimens that are often accompanied by adverse effects. The introduction of new anti-TB drugs, such as Bedaquiline, Delamanid, and Pretomanid, offers hope for more effective treatment, although challenges persist keeping the quest to find new anti-TB chemotypes an incessant exercise of medicinal chemists. Towards this initiative, the benzazoles continue to draw attention and have been recognised as new anti-TB scaffolds. Benzazole-containing compounds emerged as new chemotypes with potential to offer a versatile platform for new anti-TB drug design to generate new leads for further optimization. The elucidation of their chemical properties, biological effects, and potential mechanisms of action, would lead to identify innovative candidates for TB therapy. As medicinal chemists delve deeper into the SARs and mechanisms of action of benzazole derivatives, new opportunities for creating effective and safe anti-TB medications arise. This review highlights the potential impact of benzazole-based compounds on the search for new therapeutic agents against tuberculosis, emphasizing the importance of continued research and innovation in the field.
Collapse
Affiliation(s)
- Kshitij I Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Nirjhar Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382 481, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India; School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India.
| |
Collapse
|
2
|
Saha N, Kumar A, Debnath BB, Sarkar A, Chakraborti AK. Recent Advances in the Development of Greener Methodologies for the Synthesis of Benzothiazoles. Curr Top Med Chem 2025; 25:581-644. [PMID: 39844549 DOI: 10.2174/0115680266347975241217112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 01/24/2025]
Abstract
The benzothiazole ring system has been recognised with crucial pharmacophoric features being present among various approved drugs and clinical and pre-clinical candidates. The medicinal importance of this privileged scaffold stimulated the interest of synthetic medicinal/ organic chemists for the synthesis of its derivatives due to their diverse biological applications. In most of the reports in the literature, benzothiazoles were synthesized by cyclocondensation of 2- aminothiophenol with either carboxylic acid and its derivatives or aldehydes. However, many of these procedures involve reaction conditions that are not in conformity with sustainable chemistry development. The negative impact of chemicals and their manufacturing processes on the environment, human health, and biodiversity raises safety concerns. On the other hand, the utilization of non-renewable energy sources, use of rare earth metals as catalysts, involvement of costly chemicals, prolonged reaction time at high temperatures, and considerable waste generation diminish the greener impact of these reaction methodologies and make them non-sustainable. In order to avoid such drawbacks of the non-sustainable practices in the synthesis of benzothiazoles, there have been continuous efforts to develop greener methodologies for the construction of this bioactive scaffold. This review aims to delve into the literature reports on the recent advancements in the development of greener methodologies for the synthesis of bioactive benzothiazoles.
Collapse
Affiliation(s)
- Nirjhar Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| | - Asim Kumar
- Amity Institute of Pharmacy, Amity University Haryana, Manesar, India-122413
| | - Bibhuti Bhusan Debnath
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| | - Anirban Sarkar
- Department of Chemistry, Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, West Bengal 700006, India
| | - Asit K Chakraborti
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| |
Collapse
|
3
|
Andreeva DV, Tikhomirov AS, Shchekotikhin AE. Synthesis and antiproliferative activity of thiazole-fused anthraquinones. Org Biomol Chem 2024; 22:8493-8504. [PMID: 39344399 DOI: 10.1039/d4ob01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Heterocyclic derivatives of anthraquinone demonstrated a high potential for the development of new antitumor compounds. In this study, we report a scheme for the synthesis of thiazole-fused anthraquinones and the results of their antiproliferative activity. A convenient metal-free method for the thiolation of anthraquinone derivatives has been proposed for the preparation of the key intermediates. C-S bond formation upon nucleophilic substitution of the bromine atom in anthraquinone with 4-methoxybenzyl mercaptan readily occurs under mild conditions using t-BuOK as a base. This process was used for the preparation of anthra[2,3-d]thiazoles with various substituents at position 2, in particular the alkoxycarbonyl group. Study of the chemical properties resulted in the transformation of anthra[2,3-d]thiazole-2-carboxylic acid into a series of carboxamides. Screening the antiproliferative effect revealed moderate activity of compounds 12b and 12d against human cancer cells, showing weaker activity than anthra[2,3-d]thiophene analogs and indicating a crucial role of the heterocyclic nucleus in the antitumor potency of heteroareneanthraquinones.
Collapse
Affiliation(s)
- Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation.
| | - Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation.
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation.
| |
Collapse
|
4
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Sandouka D, Heeh M, Idais TI. AMPA receptor neurotransmission and therapeutic applications: A comprehensive review of their multifaceted modulation. Eur J Med Chem 2024; 266:116151. [PMID: 38237342 DOI: 10.1016/j.ejmech.2024.116151] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The neuropharmacological community has shown a strong interest in AMPA receptors as critical components of excitatory synaptic transmission during the last fifteen years. AMPA receptors, members of the ionotropic glutamate receptor family, allow rapid excitatory neurotransmission in the brain. AMPA receptors, which are permeable to sodium and potassium ions, manage the bulk of the brain's rapid synaptic communications. This study thoroughly examines the recent developments in AMPA receptor regulation, focusing on a shift from single chemical illustrations to a more extensive investigation of underlying processes. The complex interplay of these modulators in modifying the function and structure of AMPA receptors is the main focus, providing insight into their influence on the speed of excitatory neurotransmission. This research emphasizes the potential of AMPA receptor modulation as a therapy for various neurological disorders such as epilepsy and Alzheimer's disease. Analyzing these regulators' sophisticated molecular details enhances our comprehension of neuropharmacology, representing a significant advancement in using AMPA receptors for treating intricate neurological conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Tala Iyad Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
5
|
Andreasson M, Donzel M, Abrahamsson A, Berner A, Doimo M, Quiroga A, Eriksson A, Chao YK, Overman J, Pemberton N, Wanrooij S, Chorell E. Exploring the Dispersion and Electrostatic Components in Arene-Arene Interactions between Ligands and G4 DNA to Develop G4-Ligands. J Med Chem 2024; 67:2202-2219. [PMID: 38241609 PMCID: PMC10860144 DOI: 10.1021/acs.jmedchem.3c02127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene-arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets.
Collapse
Affiliation(s)
- Måns Andreasson
- Chemical
Biology Consortium Sweden, Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Maxime Donzel
- Chemical
Biology Consortium Sweden, Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Alva Abrahamsson
- Chemical
Biology Consortium Sweden, Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Andreas Berner
- Departments
of Medical Biochemistry and Biophysics, Umeå University, Umeå 90736, Sweden
| | - Mara Doimo
- Departments
of Medical Biochemistry and Biophysics, Umeå University, Umeå 90736, Sweden
- Clinical
Genetics Unit, Department of Women and Children’s Health, Padua University, 35128 Padua, Italy
| | - Anna Quiroga
- Departments
of Medical Biochemistry and Biophysics, Umeå University, Umeå 90736, Sweden
| | - Anna Eriksson
- Chemical
Biology Consortium Sweden, Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Yu-Kai Chao
- Mechanistic
and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Jeroen Overman
- Mechanistic
and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Nils Pemberton
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology
(R&I), Bio Pharmaceuticals R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Sjoerd Wanrooij
- Departments
of Medical Biochemistry and Biophysics, Umeå University, Umeå 90736, Sweden
| | - Erik Chorell
- Chemical
Biology Consortium Sweden, Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
6
|
Kovács F, Huliák I, Árva H, Kiricsi M, Erdős D, Kocsis M, Takács G, Balogh GT, Frank É. Medicinal-Chemistry-Driven Approach to 2-Substituted Benzoxazole-Estradiol Chimeras: Synthesis, Anticancer Activity, and Early ADME Profile. ChemMedChem 2023; 18:e202300352. [PMID: 37727903 DOI: 10.1002/cmdc.202300352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The efficient synthesis of novel estradiol-based A-ring-fused oxazole derivatives, which can be considered as benzoxazole-steroid domain-integrated hybrids containing a common benzene structural motif, is described. The target compounds were prepared from steroidal 2-aminophenol precursors by heterocycle formation or functional group interconversion (FGI) strategies. According to 2D projection-based t-distributed stochastic neighbor embedding (t-SNE), the novel molecules were proved to represent a new chemical space among steroid drugs. They were characterized based on critical physicochemical parameters using in silico and experimental data. The performance of the compounds to inhibit cell proliferation was tested on four human cancer cell lines and non-cancerous cells. Further examinations were performed to reveal IC50 and lipophilic ligand efficiency (LLE) values, cancer cell selectivity, and apoptosis-triggering features. Pharmacological tests and LLE metric revealed that some derivatives, especially the 2-(4-ethylpiperazin-1-yl)oxazole derivative exhibit strong anticancer activity and trigger the apoptosis of cancer cells with relatively low promiscuity risk similarly to the structurally most closely-related and intensively studied anticancer agent, 2-methoxy-estradiol.
Collapse
Affiliation(s)
- Ferenc Kovács
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, 6720, Szeged, Hungary
| | - Ildikó Huliák
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Hédi Árva
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Dóra Erdős
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Marianna Kocsis
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, 6720, Szeged, Hungary
| | - Gergely Takács
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Mcule.com Kft., Bartók Béla út 105-113, 1115, Budapest, Hungary
| | - György T Balogh
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. 9, 1085, Budapest, Hungary
| | - Éva Frank
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, 6720, Szeged, Hungary
| |
Collapse
|
7
|
Maltby K, Sharma K, Short MAS, Farooque S, Hamill R, Blacker AJ, Kapur N, Willans CE, Nguyen BN. Rationalizing and Adapting Water-Accelerated Reactions for Sustainable Flow Organic Processes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:8675-8684. [PMID: 37323809 PMCID: PMC10265699 DOI: 10.1021/acssuschemeng.3c02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Water-accelerated reactions, wherein at least one organic reactant is not soluble in water, are an important class of organic reactions, with a potentially pivotal impact on sustainability of chemical manufacturing processes. However, mechanistic understanding of the factors controlling the acceleration effect has been limited, due to the complex and varied physical and chemical nature of these processes. In this study, a theoretical framework has been established to calculate the rate acceleration of known water-accelerated reactions, giving computational estimations of the change to ΔG‡ which correlate with experimental data. In-depth study of a Henry reaction between N-methylisatin and nitromethane using our framework led to rationalization of the reaction kinetics, its lack of dependence on mixing, kinetic isotope effect, and different salt effects with NaCl and Na2SO4. Based on these findings, a multiphase flow process which includes continuous phase separation and recycling of the aqueous phase was developed, and its superior green metrics (PMI-reaction = 4 and STY = 0.64 kg L-1 h-1) were demonstrated. These findings form the essential basis for further in silico discovery and development of water-accelerated reactions for sustainable manufacturing.
Collapse
Affiliation(s)
- Katarzyna
A. Maltby
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Krishna Sharma
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Marc A. S. Short
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Sannia Farooque
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Rosalie Hamill
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - A. John Blacker
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Nikil Kapur
- School
of Mechanical Engineering, University of
Leeds, Leeds LS2 9JT, U.K.
| | - Charlotte E. Willans
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Bao N. Nguyen
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
8
|
Kushwaha N, Sahu A, Mishra J, Soni A, Dorwal D. An Insight on the Prospect of Quinazoline and Quinazolinone Derivatives as Anti-tubercular Agents. Curr Org Synth 2023; 20:838-869. [PMID: 36927421 DOI: 10.2174/1570179420666230316094435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 03/18/2023]
Abstract
Multiple potential drugs have been developed based on the heterocyclic molecules for the treatment of different symptoms. Among the existing heterocyclic molecules, quinazoline and quinazolinone derivatives have been found to exhibit extensive pharmacological and biological characteristics. One significant property of these molecules is their potency as anti-tubercular agents. Thus, both quinazoline and quinazolinone derivatives are modified using different functional groups as substituents for investigating their anti-tubercular activities. We present a summary of the reported anti-tubercular drugs, designed using quinazoline and quinazolinone derivatives, in this review.
Collapse
Affiliation(s)
| | - Adarsh Sahu
- Department of Pharmaceutical Sciences, Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Jyotika Mishra
- Department of Pharmaceutical Sciences, Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Ankit Soni
- Sri Aurobindo Institute of Pharmacy, Indore, MP, India
| | - Dhawal Dorwal
- Sri Aurobindo Institute of Pharmacy, Indore, MP, India
| |
Collapse
|
9
|
Pattarawarapan M, Yamano D, Wiriya N, Hongsibsong S, Phakhodee W. Direct Access to 2‐Aminobenzoxazinones via Ph
3
P‐I
2
Mediated Deoxygenative Amination of Isatoic Anhydrides with Tertiary Amines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mookda Pattarawarapan
- Department of Chemistry Faculty of Science Chiang Mai University 50200 Chiang Mai Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources Chiang Mai University 50200 Chiang Mai Thailand
| | - Dolnapa Yamano
- Department of Chemistry Faculty of Science Chiang Mai University 50200 Chiang Mai Thailand
| | - Nittaya Wiriya
- Department of Chemistry Faculty of Science Chiang Mai University 50200 Chiang Mai Thailand
| | - Surat Hongsibsong
- School of Health Science Research Research Institute for Health Science Chiang Mai University 50200 Chiang Mai Thailand
| | - Wong Phakhodee
- Department of Chemistry Faculty of Science Chiang Mai University 50200 Chiang Mai Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources Chiang Mai University 50200 Chiang Mai Thailand
| |
Collapse
|
10
|
Silver-catalyzed cross-dehydrogenative coupling of benzoxazine-2-ones with resorcinol. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Chudasama SJ, Shah BJ, Patel KM, Dhameliya TM. The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Ali H, El-Ossaily YA, Metwally SA, Althobaiti IO, Altaleb HA, Naffea YA, Tolba MS. Catalytic and Multicomponent Reactions for Green Synthesis of Some Pyrazolone Compounds and Evaluation as Antimicrobial Agents. ACS OMEGA 2022; 7:29142-29152. [PMID: 36033712 PMCID: PMC9404472 DOI: 10.1021/acsomega.2c03070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
A green synthetic approach and facile method was developed to produce pyrazole compounds (6a-d) by the reaction of ethyl acetoacetate (1), hydrazines (2a-d), and catalytic imidazole (3) in aqueous media. 4-Dicyanomethylene-2-pyrazoline-5-one derivatives (14a-d) were synthesized through the reaction of 2-pyrazoline-5-one derivatives (6a-d) with tetracyanoethylene (TCE) (7) by using catalytic imidazole (3) in an aqueous medium. Moreover, the 4-dicyanomethylene derivative (16) was obtained via treatment of 1-phenyl-3,5-pyrazolidinedione (15) with TCE (7). The spiropyrazoleoxirane derivatives (18 and 20) were prepared by treating the precursor 4-dicyanomethylene-2-pyrazoline-5-one derivative (14b) with hydrogen peroxide in various polar solvents under alkaline conditions. The spiropyrazole oxirane derivative (18) was used as a precursor for the design of functionalized pyrazolone derivatives (24 and 27a, b). The chemical structure of the novel designed derivatives was ascertained based on elemental analyses, mp, thin-layer chromatography, and spectral analyses. Furthermore, some of the synthesized derivatives were examined against different pathogenic bacterial and fungal strains. Their results demonstrated that some of them revealed notable antimicrobial activities.
Collapse
Affiliation(s)
- Hazim
M. Ali
- Department
of Chemistry,College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Yasser A. El-Ossaily
- Department
of Chemistry,College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Saoud A. Metwally
- Chemistry
Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Ibrahim O. Althobaiti
- Department
of Chemistry,College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Hamud A. Altaleb
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Al-Madinah, Al-Munawwarah 42351, Saudi Arabia
| | - Yousra A. Naffea
- Plant
protection research institute, Agricultural research center, Dokki, Giza 12619, Egypt
| | - Mahmoud S. Tolba
- Chemistry
Department, Faculty of Science, New Valley
University, El-Kharja 72511, Egypt
| |
Collapse
|
13
|
Minami K, Minakawa M, Uozumi Y. Preparation of Benzothiazoles and Heterocyclic Spiro Compounds Through Cu‐catalyzed S–S Bond Cleavage and C–S Bond Formation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keisuke Minami
- Yamagata University: Yamagata Daigaku Graduate School of Science and Engineering JAPAN
| | - Maki Minakawa
- Yamagata University: Yamagata Daigaku Graduate School of Science and Engineering 4-3-16, Jonan 992-8510 Yonezawa JAPAN
| | - Yasuhiro Uozumi
- Institute of Molecular Sciences: Institut des Sciences Moleculaires Complex Catalysis 5-1, Higashiyama, Myodaiji 444-8787 Okazaki JAPAN
| |
Collapse
|
14
|
A review on synthetic account of 1,2,4-oxadiazoles as anti-infective agents. Mol Divers 2022; 26:2967-2980. [PMID: 34984590 PMCID: PMC8727175 DOI: 10.1007/s11030-021-10375-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 11/03/2022]
Abstract
Most of the currently marketed drugs consist of heterocyclic scaffolds containing nitrogen and or oxygen as heteroatoms in their structures. Several research groups have synthesized diversely substituted 1,2,4-oxadiazoles as anti-infective agents having anti-bacterial, anti-viral, anti-leishmanial, etc. activities. For the first time, the present review article will provide the coverage of synthetic account of 1,2,4-oxadiazoles as anti-infective agents along with their potential for SAR, activity potential, promising target for mode of action. The efforts have been made to provide the chemical intuitions to the reader to design new chemical entity with potential of anti-infective activity. This review will mark the impact as the valuable, comprehensive and pioneered work along with the library of synthetic strategies for the organic and medicinal chemists for further refinement of 1,2,4-oxadiazole as anti-infective agents.
Collapse
|
15
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Ye ZP, Liu F, Duan XY, Gao J, Guan JP, Xiao JA, Xiang HY, Chen K, Yang H. Visible Light-Promoted Radical Relay Cyclization/C-C Bond Formation of N-Allylbromodifluoroacetamides with Quinoxalin-2(1 H)-ones. J Org Chem 2021; 86:17173-17183. [PMID: 34743511 DOI: 10.1021/acs.joc.1c02285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A visible light-promoted radical relay of N-allylbromodifluoroacetamide with quinoxalin-2(1H)-ones was developed in which 5-exo-trig cyclization and C-C bond formation were involved. This protocol was performed under mild conditions to facilely offer a variety of hybrid molecules bearing both quinoxalin-2(1H)-one and 3,3-difluoro-γ-lactam motifs. These prepared novel skeletons would expand the accessible chemical space for structurally complex heterocycles with potential biological activities.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xin-Yu Duan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
17
|
Cytotoxic Activity of Piperazin-2-One-Based Structures: Cyclic Imines, Lactams, Aminophosphonates, and Their Derivatives. MATERIALS 2021; 14:ma14092138. [PMID: 33922317 PMCID: PMC8122789 DOI: 10.3390/ma14092138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022]
Abstract
N-Heterocycles are considered as desirable scaffolds for the development of novel lead compounds for anticancer drug research. Among them, phosphorus-containing amino-derivatives play a crucial role. A series of imines and products of their further reactions with P-nucleophiles were obtained starting from vicinal bisamines. Reaction of ethylenediamine and α-carbonyl esters yielded in novel unexpected products, which structures were confirmed by crystallographic measurements. The cytotoxic activity evaluation was done on a variety of cell lines including HUH7, AKH12, DAOY, UW228-2, D283, D425, and U251. Human umbilical vein endothelial cells (HUVECs) were used as control. Two of the tested compounds, bearing TADDOL-derived, and trifluoromethyl substituents showed a significant effect on cell viability, though comparable to nonmalignant cells.
Collapse
|
18
|
Kuzu B, Sari O, Erdem SS, Algul O, Menges N. Synthesis of Benzoxazole‐2‐carboxylate Derivatives: Electronic‐ and Position‐effect of Functional Groups and Computational Modeling of the Selectivity for Oxazole Ring. ChemistrySelect 2021. [DOI: 10.1002/slct.202100174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Burak Kuzu
- Department of Pharmaceutical Chemistry Mersin University Mersin Turkey
- Department of Pharmaceutical Chemistry Van Yüzüncü Yil University 65080 Van Turkey
| | - Ozlem Sari
- Department of Chemistry Faculty of Arts and Sciences Kırşehir Ahi Evran University 40100 Kırşehir Turkey
| | - Safiye Sag Erdem
- Department of Chemistry Faculty of Arts and Sciences Marmara University Goztepe Campus 34722 Istanbul Turkey
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry Mersin University Mersin Turkey
| | - Nurettin Menges
- Department of Pharmaceutical Chemistry Van Yüzüncü Yil University 65080 Van Turkey
| |
Collapse
|
19
|
Sofi FA, Sharma R, Rawat R, Chakraborti AK, Bharatam PV. Visible light promoted tandem dehydrogenation-deaminative cyclocondensation under aerobic conditions for the synthesis of 2-aryl benzimidazoles/quinoxalines from ortho-phenylenediamines and arylmethyl/ethyl amines. NEW J CHEM 2021. [DOI: 10.1039/d0nj03002c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible light promoted tandem dehydrogenation-deaminative cyclocondensation of arylmethyl/ethyl amines with ortho-phenylenediamines under aerobic conditions is reported for the synthesis of 2-aryl benzimidazoles/quinoxalines.
Collapse
Affiliation(s)
- Firdoos Ahmad Sofi
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| | - Rohit Sharma
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| | - Ravi Rawat
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| | - Asit K. Chakraborti
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| |
Collapse
|
20
|
Kuriyama M, Onomura O, Mochizuki Y, Miyagi T, Yamamoto K, Demizu Y. Transition Metal-Free O-Arylation of Quinoxalin-2-ones with Diaryliodonium Salts. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Tu Z, Zhao B, Wan J, Wang C, Liu Y. Aerobic Construction of 2-Acyl Benzoxazole by Tandem C—H Oxygenation and Oxazole Ring Formation. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Dhameliya TM, Patel KI, Tiwari R, Vagolu SK, Panda D, Sriram D, Chakraborti AK. Design, synthesis, and biological evaluation of benzo[d]imidazole-2-carboxamides as new anti-TB agents. Bioorg Chem 2020; 107:104538. [PMID: 33349456 DOI: 10.1016/j.bioorg.2020.104538] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/17/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023]
Abstract
Tuberculosis is the leading cause of death globally among infectious diseases. Due to the development of resistance of Mycobacterium tuberculosis to currently used anti-TB medicines and the TB-HIV synergism the urgent need to develop novel anti-mycobacterial agents has been realized. The drug-to-target path has been the successful strategy for new anti-TB drug development. All the six drug candidates that have shown promise during the clinical trials and some of these being approved for treatment against MDR TB are the results of phenotype screening of small molecule compound libraries. In search of compounds belonging to novel pharmacophoric class that could be subjected to whole cell assay to generate new anti-TB leads the benzo[d]imidazole-2-carboxamide moiety has been designed as a novel anti-TB scaffold. The design was based on the identification of the benzimidazole ring as a prominent substructure of the FDA approved drugs, the structural analysis of reported anti-TB benzimidazoles, and the presence of the C-2 carboxamido functionality in novel bioisoteric anti-TB benzothiazoles. Twenty seven final compounds have been prepared via NH4Cl-catalyzed amidation of ethyl benzo[d]imidazole-2-carboxylates, as the required intermediates, obtained through a green "all water" one-pot synthetic route following a tandem N-arylation-reduction-cyclocondensation procedure. All of the synthesised target compounds were assessed for anti-TB potential using H37Rv ATCC27294 strain. Thirteen compounds were found with better MIC (0.78-6.25 µg/mL) than the standard drugs and being non-cytotoxic nature (<50% inhibition against RAW 264.7 cell lines at 50 µg/mL). The compound 8e exhibited best anti-TB activity (MIC: 2.15 µM and selectivity index: > 60) and a few others e.g., 8a, 8f, 8k and 8o are the next best anti-TB hits (MIC: 1.56 µg/mL). The determination and analysis of various physiochemical parameters revealed favorable druglike properties of the active compounds. The compounds 8a-l and 8o, with MIC values of ≤ 6.25 μg/mL, have high LipE values (10.66-11.77) that are higher than that of the suggested value of > 6 derived from empirical evidence for quality drug candidates and highlight their therapeutic potential. The highest LipE value of 11.77 of the best active compound 8e with the MIC of 0.78 μg/mL indicates its better absorption and clearance as a probable clinical candidate for anti-TB drug discovery. These findings highlight the discovery of benzimidazole-2-carboxamides for further development as new anti-TB agents.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India
| | - Kshitij I Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India
| | - Rishu Tiwari
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Siva Krishna Vagolu
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Dulal Panda
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062 Punjab, India; Department of Chemistry, Indian Institute of Technology - Ropar, Rupnagar, Punjab 140 001, India.
| |
Collapse
|
23
|
Benzimidazoquinazolines as new potent anti-TB chemotypes: Design, synthesis, and biological evaluation. Bioorg Chem 2020; 99:103774. [DOI: 10.1016/j.bioorg.2020.103774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 02/08/2023]
|
24
|
Methods for the synthesis of quinoxalin-2-ones (microreview). Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Singh DK, Sahu A, Wani AA, Bharatam PV, Chakraborti AK, Giri S, Singh S. Characterization of Photodegradation Products of Bepotastine Besilate and In Silico Evaluation of Their Physicochemical, Absorption, Distribution, Metabolism, Excretion and Toxicity Properties. J Pharm Sci 2020; 109:1883-1895. [PMID: 32173321 DOI: 10.1016/j.xphs.2020.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
Bepotastine (BPT) is a H1-receptor antagonist. It is used as a besilate salt in ophthalmic solution for allergic conjunctivitis and orally for the treatment of allergic rhinitis and urticaria/pruritus. Its systematic forced degradation study is unreported. The same was carried out in different conditions prescribed by International Conference on Harmonisation. The stressed solutions were subjected to reversed phase liquid chromatographic analysis, and BPT was observed to be labile under photobasic condition only, yielding 5 photodegradation products. The structures of the latter were elucidated from data generated by liquid chromatography-high-resolution mass spectrometry and multistage mass spectrometry. Of the 5, 4 products were further isolated and subjected to nuclear magnetic resonance spectroscopy to justify the proposed structures. Two of them, with similar accurate mass, were additionally and unambiguously characterized from their heteronuclear multiple bond correlation data, hydrogen deuterium exchange mass data, and quantum chemical analysis using density functional theory calculations. One degradation product had a structure that could only be explained by unusual rearrangement involving conversions of N-oxide into hydroxylamine, similar to Meisenheimer rearrangement. The physicochemical, as well as absorption, distribution, metabolism, excretion, and toxicity properties of BPT and its characterized photodegradation products were evaluated in silico by ADMET Predictor™ software.
Collapse
Affiliation(s)
- Dilip Kumar Singh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Archana Sahu
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Aabid Abdullah Wani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Sanjeev Giri
- DMPK and Pharmaceutical Development, Aurigene Discovery Technologies Limited, Hyderabad 500 049, Telangana, India
| | - Saranjit Singh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India.
| |
Collapse
|
26
|
Xia PJ, Hu YZ, Ye ZP, Li XJ, Xiang HY, Yang H. O-Perfluoropyridin-4-yl Oximes: Iminyl Radical Precursors for Photo- or Thermal-Induced N-O Cleavage in C(sp 2)-C(sp 3) Bond Formation. J Org Chem 2020; 85:3538-3547. [PMID: 31971800 DOI: 10.1021/acs.joc.9b03251] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O-Perfluoropyridin-4-yl group was first installed onto cycloketone oximes as a new electrophore, which was proven to be efficient iminyl radical precursors under photocatalytic and thermal conditions. A range of O-perfluoropyridin-4-yl oximes were successfully utilized in C(sp2)-C(sp3) bond formations of quinoxalin-2(1H)-ones and alkenes, providing facile accesses to a range of functionalized alkylnitriles.
Collapse
Affiliation(s)
- Peng-Ju Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xu-Jie Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
27
|
Aljaar N, Gujjarappa R, Al‐Refai M, Shtaiwi M, Malakar CC. Overview on Recent Approaches towards Synthesis of 2‐Keto‐annulated Oxazole Derivatives. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nayyef Aljaar
- Chemistry DepartmentThe Hashemite University P.O. Box 150459 Zarqa 13115 Jordan
| | - Raghuram Gujjarappa
- Department of ChemistryNational Institute of Technology Manipur Langol Imphal 795004 India
| | - Mahmoud Al‐Refai
- Department of Chemistry, Faculty of ScienceAl al‐Bayt University Al‐Mafraq 25113 Jordan
| | - Majed Shtaiwi
- Chemistry DepartmentThe Hashemite University P.O. Box 150459 Zarqa 13115 Jordan
| | - Chandi C. Malakar
- Department of ChemistryNational Institute of Technology Manipur Langol Imphal 795004 India
| |
Collapse
|
28
|
Dhameliya TM, Tiwari R, Banerjee A, Pancholia S, Sriram D, Panda D, Chakraborti AK. Benzo[d]thiazole-2-carbanilides as new anti-TB chemotypes: Design, synthesis, biological evaluation, and structure-activity relationship. Eur J Med Chem 2018; 155:364-380. [PMID: 29902722 DOI: 10.1016/j.ejmech.2018.05.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 11/26/2022]
Abstract
Tuberculosis is the second leading cause of deaths worldwide. The inadequacy of existing drugs to treat TB due to developed resistance and TB-HIV synergism urges for new anti-TB drugs. Seventy-two benzo[d]thiazole-2-carbanilides have been synthesized through CDI-mediated direct coupling of benzo[d]thiazole-2-carboxylic acids with aromatic amines using a three step methodology which includes a green protocol for synthesis of ethyl benzo[d]thiazole-2-carboxylates, precursor of the desired carboxylic acids. The compounds were evaluated in vitro for anti-tubercular activity against M. tuberculosis H37Rv (ATCC27294 strain). Thirty-two compounds exhibiting MIC values in the range of 0.78-6.25 μg/mL (1.9-23 μM) were subjected to cell viability test against RAW 264.7 cell lines and thirty compounds were found to be non-toxic (<50% inhibition). The most active compounds with MIC of 0.78 μg/mL (e.g., 4i, 4n, 4s, 4w, 6f, 6h, 6u, 7e, 7h, 7p, 7r and 7w) exhibit therapeutic index of 64. The structure activity relationship of the N-arylbenzo[d]thiazole-2-carboxamides has been established for anti-mycobacterial activity. Molecular docking suggests that the compounds 7w, 4i and 4n bind to the catalytic site of the enzyme ATP Phosphoribosyltransferase (HisG) and might be attributed to their anti-TB potential. These can serve as a new starting point for the development of anti-TB agents with therapeutic potential.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Rishu Tiwari
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| | - Arkaprabha Banerjee
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| | - Sahaj Pancholia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, 500 078, India
| | - Dulal Panda
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India.
| |
Collapse
|