1
|
Dohi T, Elboray EE, Kikushima K, Morimoto K, Kita Y. Iodoarene Activation: Take a Leap Forward toward Green and Sustainable Transformations. Chem Rev 2025; 125:3440-3550. [PMID: 40053418 PMCID: PMC11951092 DOI: 10.1021/acs.chemrev.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Constructing chemical bonds under green sustainable conditions has drawn attention from environmental and economic perspectives. The dissociation of (hetero)aryl-halide bonds is a crucial step of most arylations affording (hetero)arene derivatives. Herein, we summarize the (hetero)aryl halides activation enabling the direct (hetero)arylation of trapping reagents and construction of highly functionalized (hetero)arenes under benign conditions. The strategies for the activation of aryl iodides are classified into (a) hypervalent iodoarene activation followed by functionalization under thermal/photochemical conditions, (b) aryl-I bond dissociation in the presence of bases with/without organic catalysts and promoters, (c) photoinduced aryl-I bond dissociation in the presence/absence of organophotocatalysts, (d) electrochemical activation of aryl iodides by direct/indirect electrolysis mediated by organocatalysts and mediators acting as electron shuttles, and (e) electrophotochemical activation of aryl iodides mediated by redox-active organocatalysts. These activation modes result in aryl iodides exhibiting diverse reactivity as formal aryl cations/radicals/anions and aryne precursors. The coupling of these reactive intermediates with trapping reagents leads to the facile and selective formation of C-C and C-heteroatom bonds. These ecofriendly, inexpensive, and functional group-tolerant activation strategies offer green alternatives to transition metal-based catalysis.
Collapse
Affiliation(s)
- Toshifumi Dohi
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Elghareeb E. Elboray
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department
of Chemistry, Faculty of Science, South
Valley University, Qena 83523, Egypt
| | - Kotaro Kikushima
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Koji Morimoto
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
2
|
Wang L, Bao L, Li G, Dong J, Xu X. Tandem Cyclization of o-Hydroxyphenyl Propargyl Alcohols with Thionucleophiles: A Metal-Free and Modular Access to 3-Fluoroalkylsulfonyl/Thio Benzofurans. J Org Chem 2024; 89:17577-17586. [PMID: 39523600 DOI: 10.1021/acs.joc.4c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Despite both fluoroalkylsulfonyl groups and benzofurans are important bioactive moieties, the construction of fluoroalkanesulfonylated benzofurans that incorporate these two fragments remains underdeveloped. Here, we report a tandem cyclization protocol to construct a wide range of 3-fluoroalkylsulfonyl benzofurans using readily accessible o-hydroxyphenyl propargyl alcohols and sodium fluoroalkanesulfinates. Furthermore, this synthetic strategy can also be adapted to prepare 3-thio benzofurans by changing the S-nucleophiles to thiols or thiophenols.
Collapse
Affiliation(s)
- Lele Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Lan Bao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Guili Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Jinhuan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
3
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
4
|
Yoshida T, Honda Y, Morofuji T, Kano N. Transition-Metal-Free O-Arylation of Alcohols and Phenols with S-Arylphenothiaziniums. J Org Chem 2022; 87:7565-7573. [PMID: 35578794 DOI: 10.1021/acs.joc.2c00771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the transition-metal-free O-arylation of alcohols and phenols with S-arylphenothiaziniums, which can be easily synthesized from boronic acids. Aryl substituents derived from arylboronic acids were selectively introduced into the hydroxy groups in alcohols and phenols, and a variety of aryl ethers were synthesized. This selectivity is supported by theoretical calculations.
Collapse
Affiliation(s)
- Tatsuki Yoshida
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Yuki Honda
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
5
|
Tan Y, Wang J, Zhang HY, Zhang Y, Zhao J. The C3-H Bond Functionalization of Quinoxalin-2(1 H)-Ones With Hypervalent Iodine(III) Reagents. Front Chem 2020; 8:582. [PMID: 32850624 PMCID: PMC7432307 DOI: 10.3389/fchem.2020.00582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
The modification of quinoxalin-2(1H)-ones via direct C-H bond functionalization has begun to receive widespread attention, due to quinoxalin-2(1H)-one derivatives' various biological activities and pharmaceutical properties. This mini review concentrates on the accomplishments of arylation, trifluoromethylation, alkylation, and alkoxylation of quinoxalin-2(1H)-ones with hypervalent iodine(III) reagents as reaction partners or oxidants. The reaction conditions and mechanisms are compared and discussed in detail.
Collapse
Affiliation(s)
- Yushi Tan
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Jiabo Wang
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Hong-Yu Zhang
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Yuecheng Zhang
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Jiquan Zhao
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| |
Collapse
|
6
|
Sreenithya A, Sunoj RB. On the activation of hypercoordinate iodine(iii) compounds for reactions of current interest. Dalton Trans 2019; 48:4086-4093. [PMID: 30860253 DOI: 10.1039/c9dt00472f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Central to the reactivity of hypercoordinate iodine as a continually emerging compound for organic transformation is its activation by various additives. We wish to present the current understanding on bonding and activation modes under different reaction conditions involving hypercoordinate iodine(iii) compounds.
Collapse
Affiliation(s)
- A Sreenithya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | | |
Collapse
|
7
|
Ni J, Jiang Y, An Z, Lan J, Yan R. A convenient access to allylic triflones with allenes and triflyl chloride in the presence of (EtO)2P(O)H. Chem Commun (Camb) 2019; 55:7343-7345. [PMID: 31169835 DOI: 10.1039/c9cc03096d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A simple method for the preparation of allylic triflones from allenes and triflyl chloride in the presence of (EtO)2P(O)H has been developed.
Collapse
Affiliation(s)
- Jixiang Ni
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing
- China
| | - Zhenyu An
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Jingfeng Lan
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| |
Collapse
|
8
|
|
9
|
Das P, Tokunaga E, Akiyama H, Doi H, Saito N, Shibata N. Synthesis of fluoro-functionalized diaryl-λ 3-iodonium salts and their cytotoxicity against human lymphoma U937 cells. Beilstein J Org Chem 2018; 14:364-372. [PMID: 29507641 PMCID: PMC5815272 DOI: 10.3762/bjoc.14.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/24/2018] [Indexed: 12/24/2022] Open
Abstract
Conscious of the potential bioactivity of fluorine, an investigation was conducted using various fluorine-containing diaryliodonium salts in order to study and compare their biological activity against human lymphoma U937 cells. Most of the compounds tested are well-known reagents for fluoro-functionalized arylation reactions in synthetic organic chemistry, but their biological properties are not fully understood. Herein, after initially investigating 18 fluoro-functionalized reagents, we discovered that the ortho-fluoro-functionalized diaryliodonium salt reagents showed remarkable cytotoxicity in vitro. These results led us to synthesize more compounds, previously unknown sterically demanding diaryliodonium salts having a pentafluorosulfanyl (SF5) functional group at the ortho-position, that is, unsymmetrical ortho-SF5 phenylaryl-λ3-iodonium salts. Newly synthesized mesityl(2-(pentafluoro-λ6-sulfanyl)phenyl)iodonium exhibited the greatest potency in vitro against U937 cells. Evaluation of the cytotoxicity of selected phenylaryl-λ3-iodonium salts against AGLCL (a normal human B cell line) was also examined.
Collapse
Affiliation(s)
- Prajwalita Das
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Hidehiko Akiyama
- Faculty of Medical Technology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan
| | - Hiroki Doi
- Faculty of Medical Technology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan
| | - Norimichi Saito
- Pharmaceutical Division, Ube Industries, Ltd. Seavans North Bldg., 1-2-1 Shibaura, Minato-ku, Tokyo 105-8449, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
10
|
Das P, Gondo S, Tokunaga E, Sumii Y, Shibata N. Anionic Triflyldiazomethane: Generation and Its Application for Synthesis of Pyrazole-3-triflones via [3 + 2] Cycloaddition Reaction. Org Lett 2018; 20:558-561. [PMID: 29320193 DOI: 10.1021/acs.orglett.7b03664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of pyrazole triflones containing a triflyl group at the 3-position is disclosed. Treatment of 2-diazo-1-phenyl-2-((trifluoromethyl)sulfonyl)ethan-1-one with nitroalkenes under basic conditions gave pharmaceutically attractive pyrazole 3-triflones in good to high yields. The generation of anionic triflyldiazomethane species followed by the [3 + 2] cycloaddition reaction with nitroalkenes is proposed for this transformation. 3-(Difluoromethanesulfonyl)pyrazoles were also synthesized by using a previously unknown anionic (difluoromethanesulfonyl)diazomethane species under a similar strategy.
Collapse
Affiliation(s)
- Pulakesh Das
- Department of Nanopharmaceutical Sciences, Department of Life Science and Applied Chemistry, Nagoya Institute of Technology , Gokiso-cho, Showa-ku Nagoya 466-8555, Japan
| | - Satoshi Gondo
- Department of Nanopharmaceutical Sciences, Department of Life Science and Applied Chemistry, Nagoya Institute of Technology , Gokiso-cho, Showa-ku Nagoya 466-8555, Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences, Department of Life Science and Applied Chemistry, Nagoya Institute of Technology , Gokiso-cho, Showa-ku Nagoya 466-8555, Japan
| | - Yuji Sumii
- Department of Nanopharmaceutical Sciences, Department of Life Science and Applied Chemistry, Nagoya Institute of Technology , Gokiso-cho, Showa-ku Nagoya 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Department of Life Science and Applied Chemistry, Nagoya Institute of Technology , Gokiso-cho, Showa-ku Nagoya 466-8555, Japan.,Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University , 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
11
|
Sumii Y, Sugita Y, Tokunaga E, Shibata N. Synthesis of Aryl Triflones through the Trifluoromethanesulfonylation of Benzynes. ChemistryOpen 2018; 7:204-211. [PMID: 29497592 PMCID: PMC5827650 DOI: 10.1002/open.201700204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 11/05/2022] Open
Abstract
The direct synthesis of aryl triflones, that is, trifluoromethanesulfonyl arenes, was achieved through the trifluoromethanesulfonylation of benzynes. The trifluoromethanesulfonyl group, one of the fluorinated functional groups, is a highly electron-negative and mild lipophilic substituent. Aryl triflones have high potential in the synthesis of bioactive compounds and specialty materials. The treatment of 2-(trimethylsilyl)aryl trifluoromethanesulfonates with cesium fluoride in the presence of 15-crown-5 generated benzynes, which reacted with sodium trifluoromethanesulfinate followed by protonation with tBuOH under heating conditions, provided aryl triflones in moderated to good yields. Both symmetrical and unsymmetrical triflones were nicely accessed under the same reaction conditions. Interestingly, the trifluoromethanesulfonylation of unsymmetrical benzyne precursors proceeded smoothly to furnish corresponding aryl triflones in good yields with good to high regioselectivities. The balance of polarization of electric charge as well as steric hindrance of the benzyne intermediates are central factors to control the outcome of regioselectivity.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied ChemistryNagoya Institute of TechnologyGokiso-cho, Showa-kuNagoya466–8555Japan
| | - Yutaka Sugita
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied ChemistryNagoya Institute of TechnologyGokiso-cho, Showa-kuNagoya466–8555Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied ChemistryNagoya Institute of TechnologyGokiso-cho, Showa-kuNagoya466–8555Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied ChemistryNagoya Institute of TechnologyGokiso-cho, Showa-kuNagoya466–8555Japan
- Institute of Advanced Fluorine-Containing MaterialsZhejiang Normal University688 Yingbin Avenue321004JinhuaChina
| |
Collapse
|
12
|
Almendros P, Yanai H, Hoshikawa S, Aragoncillo C, Lázaro-Milla C, Toledano-Pinedo M, Matsumoto T, Alcaide B. Transition metal-free controlled synthesis of bis[(trifluoromethyl)sulfonyl]ethyl-decorated heterocycles. Org Chem Front 2018. [DOI: 10.1039/c8qo00955d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The metal- and irradiation-free C–H bis(triflyl)ethylation reactions of a variety of heterocycles including marketed drugs have been accomplished.
Collapse
Affiliation(s)
- Pedro Almendros
- Instituto de Química Orgánica General
- Consejo Superior de Investigaciones Científicas
- IQOG-CSIC
- 28006 Madrid
- Spain
| | - Hikaru Yanai
- School of Pharmacy
- Tokyo University of Pharmacy and Life Sciences
- Tokyo 192-0392
- Japan
| | - Shoki Hoshikawa
- School of Pharmacy
- Tokyo University of Pharmacy and Life Sciences
- Tokyo 192-0392
- Japan
| | - Cristina Aragoncillo
- Grupo de Lactamas y Heterociclos Bioactivos
- Departamento de Química Orgánica I
- Unidad Asociada al CSIC
- Facultad de Química
- Universidad Complutense de Madrid
| | - Carlos Lázaro-Milla
- Grupo de Lactamas y Heterociclos Bioactivos
- Departamento de Química Orgánica I
- Unidad Asociada al CSIC
- Facultad de Química
- Universidad Complutense de Madrid
| | - Mireia Toledano-Pinedo
- Grupo de Lactamas y Heterociclos Bioactivos
- Departamento de Química Orgánica I
- Unidad Asociada al CSIC
- Facultad de Química
- Universidad Complutense de Madrid
| | - Takashi Matsumoto
- School of Pharmacy
- Tokyo University of Pharmacy and Life Sciences
- Tokyo 192-0392
- Japan
| | - Benito Alcaide
- Grupo de Lactamas y Heterociclos Bioactivos
- Departamento de Química Orgánica I
- Unidad Asociada al CSIC
- Facultad de Química
- Universidad Complutense de Madrid
| |
Collapse
|