1
|
Chang MY, Lin CY. Construction of diaryl oxacyclic sulfones via Bi(OTf) 3-catalyzed intramolecular cyclocondensation of 1,3-diaroylsulfones. Org Biomol Chem 2025; 23:1662-1672. [PMID: 39775730 DOI: 10.1039/d4ob01916d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
We report the synthesis of six-membered saturated and unsaturated 1,4-oxasulfone derivatives via rongalite-mediated intermolecular double sulfination of α-bromoacetophenone. This was followed by Bi(OTf)3-catalyzed intramolecular condensation of 1,3-diaroylsulfones under open-vessel conditions. Furthermore, the chemical structures of the key products were determined through single-crystal X-ray analyses.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- NPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Chun-Yi Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
2
|
Wang K, Liu H, Huang Q, Duan Z, Wang J, Zhao C, Lian X, Liu R, Su Y, Guan X, Zhang Y, Lv W, Zhou H, Huang G, Shen Y, Zhang H, Xie F. Controllable Iodoplumbate-Coordination of Hybrid Lead Iodide Perovskites via Additive Engineering for High-Performance Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50972-50981. [PMID: 39265090 DOI: 10.1021/acsami.4c12647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The crystallization and growth of perovskite crystals are two crucial factors influencing the performance of perovskite solar cells (PSCs). Moreover, iodoplumbate complexes such as PbI2, PbI3-, and PbI42- in perovskite precursor solution dictate both the quality of perovskite crystals and the optoelectrical performance of PSCs. Here, we propose an iodoplumbate-coordination strategy that employs pentafluorophenylsulfonyl chloride (PTFC) as an additive to tailor the crystal quality. This strategy directly affects the thermodynamics and kinetics of perovskite crystal formation by regulating hydrogen bonds or coordination bonds with Pb2+ or I- ions. Subsequently, the synergistic effect of the PTFC and FA+ complex was beneficial for intermediate-to-perovskite phase transition, improving the crystalline quality and reducing the defect density in the perovskite film to suppress nonradiative recombination loss. Consequently, the treated PSCs achieved a power conversion efficiency (PCE) of 24.61%, demonstrating enhanced long-term stability under both light and thermal stress. The developed device retained 92.53% of its initial PCE after 1200 h of continuous illumination and 88.6% of its initial PCE after 600 h of 85 °C thermal stability tests, respectively, both conducted in N2 atmospheres.
Collapse
Affiliation(s)
- Kongxiang Wang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P.R. China
| | - Hong Liu
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P.R. China
| | - Qi Huang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P.R. China
| | - Zhongtao Duan
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P.R. China
| | - Jing Wang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P.R. China
| | - Chenxu Zhao
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, P.R. China
| | - Xinxin Lian
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Ruochen Liu
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P.R. China
| | - Yu Su
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P.R. China
| | - Xiang Guan
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P.R. China
| | - Yan Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P.R. China
| | - Wenru Lv
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P.R. China
| | - Haiting Zhou
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P.R. China
| | - Guoping Huang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P.R. China
| | - Yi Shen
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Hong Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Fengxian Xie
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P.R. China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
3
|
Tan Y, Wang J, Zhang HY, Zhang Y, Zhao J. The C3-H Bond Functionalization of Quinoxalin-2(1 H)-Ones With Hypervalent Iodine(III) Reagents. Front Chem 2020; 8:582. [PMID: 32850624 PMCID: PMC7432307 DOI: 10.3389/fchem.2020.00582] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
The modification of quinoxalin-2(1H)-ones via direct C-H bond functionalization has begun to receive widespread attention, due to quinoxalin-2(1H)-one derivatives' various biological activities and pharmaceutical properties. This mini review concentrates on the accomplishments of arylation, trifluoromethylation, alkylation, and alkoxylation of quinoxalin-2(1H)-ones with hypervalent iodine(III) reagents as reaction partners or oxidants. The reaction conditions and mechanisms are compared and discussed in detail.
Collapse
Affiliation(s)
- Yushi Tan
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Jiabo Wang
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Hong-Yu Zhang
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Yuecheng Zhang
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Jiquan Zhao
- Tianjin Key Laboratory of Chemical Process Safety, Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| |
Collapse
|
4
|
Shang Z, Chen Q, Xing L, Zhang Y, Wait L, Du Y. in
situ
Formation of RSCl/ArSeCl and Their Oxidative Coupling with Enaminone Derivatives Under Transition‐metal Free Conditions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900940] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhenhua Shang
- College of Chemical and Pharmaceutical EngineeringHebei University of Science and Technology; Hebei Research Center of Pharmaceutical and Chemical Engineering Shijiazhuang 050018 People's Republic of China
| | - Qingyu Chen
- College of Chemical and Pharmaceutical EngineeringHebei University of Science and Technology; Hebei Research Center of Pharmaceutical and Chemical Engineering Shijiazhuang 050018 People's Republic of China
| | - Linlin Xing
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and TechnologyTianjin University Tianjin 300072 People's Republic of China
| | - Yilin Zhang
- C. Eugene Bennett Department of ChemistryWest Virginia University, Morgantown West Virginia 26506-6045 United States
| | - Laura Wait
- School of Chemistry and Molecular BiosciencesThe University of Queensland St Lucia, Queensland 4068 Australia
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and TechnologyTianjin University Tianjin 300072 People's Republic of China
| |
Collapse
|
5
|
Das P, Tokunaga E, Akiyama H, Doi H, Saito N, Shibata N. Synthesis of fluoro-functionalized diaryl-λ 3-iodonium salts and their cytotoxicity against human lymphoma U937 cells. Beilstein J Org Chem 2018; 14:364-372. [PMID: 29507641 PMCID: PMC5815272 DOI: 10.3762/bjoc.14.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/24/2018] [Indexed: 12/24/2022] Open
Abstract
Conscious of the potential bioactivity of fluorine, an investigation was conducted using various fluorine-containing diaryliodonium salts in order to study and compare their biological activity against human lymphoma U937 cells. Most of the compounds tested are well-known reagents for fluoro-functionalized arylation reactions in synthetic organic chemistry, but their biological properties are not fully understood. Herein, after initially investigating 18 fluoro-functionalized reagents, we discovered that the ortho-fluoro-functionalized diaryliodonium salt reagents showed remarkable cytotoxicity in vitro. These results led us to synthesize more compounds, previously unknown sterically demanding diaryliodonium salts having a pentafluorosulfanyl (SF5) functional group at the ortho-position, that is, unsymmetrical ortho-SF5 phenylaryl-λ3-iodonium salts. Newly synthesized mesityl(2-(pentafluoro-λ6-sulfanyl)phenyl)iodonium exhibited the greatest potency in vitro against U937 cells. Evaluation of the cytotoxicity of selected phenylaryl-λ3-iodonium salts against AGLCL (a normal human B cell line) was also examined.
Collapse
Affiliation(s)
- Prajwalita Das
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Hidehiko Akiyama
- Faculty of Medical Technology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan
| | - Hiroki Doi
- Faculty of Medical Technology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan
| | - Norimichi Saito
- Pharmaceutical Division, Ube Industries, Ltd. Seavans North Bldg., 1-2-1 Shibaura, Minato-ku, Tokyo 105-8449, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
6
|
Alapour S, Zamisa SJ, Silva JRA, Alves CN, Omondi B, Ramjugernath D, Koorbanally NA. Investigations into the flexibility of the 3D structure and rigid backbone of quinoline by fluorine addition to enhance its blue emission. CrystEngComm 2018. [DOI: 10.1039/c8ce00094h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Addition of fluorine to the quinoline structure was found to decrease its intermolecular interactions and influence its 3D structure.
Collapse
Affiliation(s)
- S. Alapour
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | - S. J. Zamisa
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | - J. R. A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém
- Brazil
| | - C. N. Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém
- Brazil
| | - B. Omondi
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | - D. Ramjugernath
- School of Chemical Engineering
- University of KwaZulu-Natal
- Durban 4041
- South Africa
| | - N. A. Koorbanally
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| |
Collapse
|