1
|
Yang Y, Liang S, Zhuang H, Han F, Zhang W, Miao C. Keggin structure heteropolyacid-catalyzed phosphinylation of secondary propargyl alcohols with phosphine oxides to γ-ketophosphine oxides. Chem Commun (Camb) 2024; 60:10374-10377. [PMID: 39219531 DOI: 10.1039/d4cc02195a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Phosphotungstic acid with a Keggin structure as an efficient, simple and green catalyst for the phosphinylation of secondary propargyl alcohols with phosphine oxides to afford γ-ketophosphine oxides with up to 88% isolated yield was developed using dimethyl carbonate as a green solvent. Diaryl- or alkylaryl-substituted propargyl alcohols, and diaryl or arylalkylphosphine oxides could tolerate the system, which reduced the catalyst dosage, and avoided the use of multi-components and toxic solvents. More interestingly, phosphotungstic acid exhibited the best activity when 0.58 moles of water were added per mole of HPWA, elevating the yield from 55% to 85%. An 18O labelled product was afforded using trace H218O instead of H2O, indicating the participation of water in the reaction. Besides, our work underscores the importance and effect of a small amount of water, acting to promote the transformation of secondary propargyl alcohols into enones, which should be the real intermediates of the reaction. A mechanism involving a carbocation, Meyer-Schuster rearrangement and Michael addition of enones was proposed.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Shuyan Liang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Hongfeng Zhuang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Feng Han
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Wenxuan Zhang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Chengxia Miao
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
2
|
Liu X, Hao L, Wang Y, Yu X, Yang Z, Liu Y, Ji Y. Cu 2O-catalyzed cascade phosphinylation/cyclization of 2'-aminochalcones for the synthesis of hemi-indigo derivatives. Org Biomol Chem 2024; 22:4249-4253. [PMID: 38717449 DOI: 10.1039/d4ob00594e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A Cu2O-catalyzed cascade phosphinylation/cyclization reaction of 2'-aminochalcones and diphenylphosphine oxides to produce hemi-indigo derivatives has been developed. This strategy facilitates the sequential formation of a C-P bonds and a C-N bond in a single reaction step. Notably, the approach features one-pot operation, an earth-abundant copper catalyst, readily available starting materials, a broad substrate scope and high compatibility with functional groups, providing 33 compounds in acceptable yields.
Collapse
Affiliation(s)
- Xian Liu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Liqiang Hao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Yangyang Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Xiao Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Zhaoziyuan Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Yiping Liu
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing 401331, P. R. China.
| | - Yafei Ji
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| |
Collapse
|
3
|
Gan L, Ye C, Pi T, Wang L, Li C, Liu L, Huang T, Chen T, Han LB. Ligand-Free Iron-Catalyzed Construction of C-P Bonds via Phosphorylation of Alcohols: Synthesis of Phosphine Oxides and Phosphine Compounds. J Org Chem 2024; 89:7047-7057. [PMID: 38669210 DOI: 10.1021/acs.joc.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
An efficient method for the construction of C-P(V) and C-P(III) bonds via the iron-catalyzed phosphorylation of alcohols under ligand-free conditions is disclosed. This strategy represents a straightforward process to prepare a series of phosphine oxides and phosphine compounds in good to excellent yields from the readily available alcohols and P-H compounds. A plausible mechanism is also proposed. We anticipate that this mode of transforming simple alcohols would apply in chemical synthesis widely.
Collapse
Affiliation(s)
- Liguang Gan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Changxu Ye
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianshu Pi
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Lingling Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Chunya Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Li-Biao Han
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
- Zhejiang Yangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China
| |
Collapse
|
4
|
Zhuang H, Wan P, Miao C, Yang Y, Liang S, Han F. Heteropolyacid-Catalyzed Phosphorylation of Secondary Aromatic Alcohols with H-Phosphine Oxides in DMC: A Simple Protocol for C-P Bond Formation. J Org Chem 2024; 89:2397-2407. [PMID: 38275252 DOI: 10.1021/acs.joc.3c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We successfully achieved the phosphorylation of secondary aromatic alcohols with H-phosphine oxides (less developed system) using phosphotungstic acid as a catalyst in dimethyl carbonate. The system was simple and environmentally friendly and showed better activity than traditional Lewis or Brønsted acids such as FeCl3, p-TsOH·H2O, etc., generating up to a 97% isolated yield. Control experiments indicated that the reaction did not occur through the radical pathway, and ethers and carbocation were the key intermediates in the pathway.
Collapse
Affiliation(s)
- Hongfeng Zhuang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Peng Wan
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Chengxia Miao
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yang Yang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Shuyan Liang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Feng Han
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| |
Collapse
|
5
|
Wang XH, Xue YW, Bai CY, Wang YB, Wei XH, Su Q. Three-Component Direct Phosphorylation of Aldehydes and Alkylation of Ketones: Synthesis of γ-Ketophosphine Oxides under Acidic Conditions. J Org Chem 2023; 88:16216-16228. [PMID: 37967376 DOI: 10.1021/acs.joc.3c01674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
An effective and economical acid-promoted three-component reaction for the construction of C-P and C-C bonds for the synthesis of γ-ketophosphine oxides with water as the only byproduct was developed. Detailed mechanistic experiments confirmed that the reaction proceeds by phospha-aldol elimination, in which a benzylic carbocation is generated from the phosphorylation of aldehydes, which then reacts with ketone enolates under acidic conditions.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Ya-Wen Xue
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Chun-Yuan Bai
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Yan-Bin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Xiao-Hong Wei
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| |
Collapse
|
6
|
Ying Y, Ye Z, Wang A, Chen X, Meng S, Xu P, Gao Y, Zhao Y. Nickel-Catalyzed Radical Ring-Opening Phosphorylation of Cycloalkyl Hydroperoxides Leading to Distal Acylphosphine Oxides. Org Lett 2023; 25:928-932. [PMID: 36729387 DOI: 10.1021/acs.orglett.2c04233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A facile and efficient nickel-catalyzed C-C bond cleavage/phosphorylation of various cycloalkyl hydroperoxides was developed. This radical ring-opening strategy provided practical access to structurally diverse distal ketophosphine oxides in one pot through concurrent C═O/C-P bond formation with high atom economy under mild room temperature and base-free conditions.
Collapse
Affiliation(s)
- Yue Ying
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Ziyi Ye
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - An Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xingjie Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Pengxiang Xu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yuxing Gao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yufen Zhao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
7
|
Du P, Yin Y, Shi D, Mao K, Yu Q, Zhao J. Metal-Free Phosphination and Continued Functionalization of Pyridine: A Theoretical Study. Molecules 2022; 27:molecules27175694. [PMID: 36080460 PMCID: PMC9457550 DOI: 10.3390/molecules27175694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
This study investigates the mechanism of metal-free pyridine phosphination with P(OEt)3, PPh3, and PAr2CF3 using density functional theory calculations. The results show that the reaction mechanism and rate-determining step vary depending on the phosphine and additive used. For example, phosphination of pyridine with P(OEt)3 occurs in five stages, and ethyl abstraction is the rate-determining step. Meanwhile, 2-Ph-pyridine phosphination with PPh3 is a four-step reaction with proton abstraction as the rate-limiting step. Energy decomposition analysis of the transition states reveals that steric hindrance in the phosphine molecule plays a key role in the site-selective formation of the phosphonium salt. The mechanism of 2-Ph-pyridine phosphination with PAr2CF3 is similar to that with PPh3, and analyses of the effects of substituents show that electron-withdrawing groups decreased the nucleophilicity of the phosphine, whereas aryl electron-donating groups increased it. Finally, TfO− plays an important role in the C–H fluoroalkylation of pyridine, as it brings weak interactions.
Collapse
Affiliation(s)
- Pan Du
- School of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Yuhao Yin
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Dai Shi
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Kexin Mao
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Qianyuan Yu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Jiyang Zhao
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
- Correspondence:
| |
Collapse
|
8
|
Sun X, Yang J, Yan K, Zhuang X, Yu J, Song X, Zhang F, Li B, Wen J. Hydrophosphorylation of Electron-Deficient Alkenes and Alkynes Mediated by Convergent Paired Electrolysis. Chem Commun (Camb) 2022; 58:8238-8241. [DOI: 10.1039/d2cc02745c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward and practical strategy for hydrophosphorylation of electron-deficient alkenes and alkynes to access γ-ketophosphine oxides, enabled by a convergent paired electrolysis (CPE) in the absence of metal, base, and...
Collapse
|
9
|
One‐pot Synthesis of Substituted Pyrazoles from Propargyl Alcohols via Cyclocondensation of in situ‐Generated α‐Iodo Enones/Enals and Hydrazine Hydrate. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Liu S, Tanabe Y, Kuriyama S, Sakata K, Nishibayashi Y. Ruthenium-Catalyzed Enantioselective Propargylic Phosphinylation of Propargylic Alcohols with Phosphine Oxides. Angew Chem Int Ed Engl 2021; 60:11231-11236. [PMID: 33826795 DOI: 10.1002/anie.202102779] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 12/14/2022]
Abstract
The development of transition metal-catalyzed enantioselective propargylic substitution reactions has gained much progress in recent years, however, no successful example with phosphorus-centered nucleophiles has yet been reported until now. Herein, we report the first successful example of ruthenium-catalyzed enantioselective propargylic substitution reactions of propargylic alcohols with diarylphosphine oxides as phosphorus-centered nucleophiles. This synthetic approach provides a new method to prepare chiral phosphorus-containing organic compounds.
Collapse
Affiliation(s)
- Shiyao Liu
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ken Sakata
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
11
|
Liu S, Tanabe Y, Kuriyama S, Sakata K, Nishibayashi Y. Ruthenium‐Catalyzed Enantioselective Propargylic Phosphinylation of Propargylic Alcohols with Phosphine Oxides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shiyao Liu
- Department of Applied Chemistry School of Engineering The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshiaki Tanabe
- Department of Applied Chemistry School of Engineering The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry School of Engineering The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Ken Sakata
- Faculty of Pharmaceutical Sciences Toho University Miyama Funabashi Chiba 274-8510 Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry School of Engineering The University of Tokyo Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
12
|
Justaud F, Hachem A, Grée R. Recent Developments in the Meyer‐Schuster Rearrangement. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001494] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Frédéric Justaud
- Univ Rennes CNRS (Institut for Chemical Sciences in Rennes), UMR 6226 35000 Rennes France
| | - Ali Hachem
- Lebanese University Faculty of Sciences (I) Laboratory for Medidinal Chemistry and Natural Products and PRASE-EDST Hadath Lebanon
| | - René Grée
- Univ Rennes CNRS (Institut for Chemical Sciences in Rennes), UMR 6226 35000 Rennes France
| |
Collapse
|
13
|
Beletskaya IP, Nájera C, Yus M. Catalysis and regioselectivity in hydrofunctionalization reactions of unsaturated carbon bonds. Part III. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4983] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review addresses the possibility of obtaining Markovnikov and anti-Markovnikov isomers in the reactions of unsaturated hydrocarbons with organophosphorus and organosulfur compounds having P–H and S–H bonds using metal salts or complexes as catalysts.
The bibliography includes 247 references.
Collapse
|
14
|
Bakhtiary A, Poor Heravi MR, Hassanpour A, Amini I, Vessally E. Recent trends in the direct oxyphosphorylation of C-C multiple bonds. RSC Adv 2020; 11:470-483. [PMID: 35423055 PMCID: PMC8690964 DOI: 10.1039/d0ra08074h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 01/07/2023] Open
Abstract
Due to the wide importance of β-phosphorylated ketones as key building-blocks in the fabrication of various pharmaceutically active organophosphorus compounds, finding new and truly efficient methods for their preparation from simple, low-cost and ubiquitous feedstock materials within a single click is an interesting subject in organic synthesis. Recently, oxyfunctionalization of carbon-carbon multiple bonds has arisen as a straightforward and versatile tool for the synthesis of complex organic molecules from the simple and easily accessible alkenes/alkynes via a single operation. In this context, oxyphosphorylation of alkenes/alkynes with P(O)-H compounds has attracted considerable attention as a unique procedure for the construction of β-phosphorylated ketones. In this review, we outline the recent advances and developments in this fast-growing research field with particular emphasis on the mechanistic aspects of reaction.
Collapse
Affiliation(s)
- Alireza Bakhtiary
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| | | | - Akbar Hassanpour
- Department of Chemistry, Marand Branch, Islamic Azad University Marand Iran
| | - Issa Amini
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| |
Collapse
|
15
|
Chen C, Sun W, Yan Y, Yang F, Wang Y, Zhu Y, Liu L, Zhu B. Palladium‐Catalyzed Phosphoryl‐Carbamoylation of Alkenes: Construction of Nonbenzylic C(
sp
3
)−P(O)R
2
Bonds via C(
sp
3
)−Pd(II)−P(O)R
2
Reductive Elimination. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Wan Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Yan Yan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Fang Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Yuebo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Yan‐Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai University Shandong, Yantai 264005 People's Republic of China
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| |
Collapse
|
16
|
Zhao R, Huang X, Wang M, Hu S, Gao Y, Xu P, Zhao Y. TfOH-Catalyzed Phosphinylation of 2,3-Allenols into γ-Ketophosphine Oxides. J Org Chem 2020; 85:8185-8195. [PMID: 32452681 DOI: 10.1021/acs.joc.0c00328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The first facile and efficient acid-catalyzed direct coupling of a wide range of unprotected 2,3-allenols with arylphosphine oxides was developed, offering a general, one-step approach for the synthesis of structurally diverse γ-ketophosphine oxides accompanied by concurrent C-P/C═O bond formation with remarkable functional group tolerance and complete atom-economy under metal- and additive-free conditions. Mechanistic studies showed that this transformation involved a rearrangement and a phospha-Michael reaction.
Collapse
Affiliation(s)
- Runmin Zhao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Xianhua Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Minning Wang
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Shanshan Hu
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Yuxing Gao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Pengxiang Xu
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Yufen Zhao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| |
Collapse
|
17
|
Zou Y, Liu X, Zhang J, Yang H, Yang X, Liu X, Chu Y, Chen L. Synthesis of C2‐Phosphorylated Indoles
via
Metal‐Free 1,2‐Phosphorylation of 3‐Indolylmethanols with P(O)‐H Species. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yun‐Xiang Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Xiao‐Yan Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Jing Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Hong‐Li Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Xin‐Yue Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Xiao‐Ling Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Yi‐Wen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| |
Collapse
|
18
|
Chen L, Zou Y, Liu X, Gou X. Dehydrative Cross‐Coupling and Related Reactions between Alcohols (C−OH) and P(O)−H Compounds for C−P Bond Formation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Yun‐Xiang Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Xiao‐Yan Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Xiao‐Jun Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| |
Collapse
|
19
|
Chen C, Bao Y, Zhao J, Zhu B. Silver-promoted cascade radical cyclization of γ,δ-unsaturated oxime esters with P(O)H compounds: synthesis of phosphorylated pyrrolines. Chem Commun (Camb) 2019; 55:14697-14700. [DOI: 10.1039/c9cc08124k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the first silver-promoted imino-phosphorylation of γ,δ-unsaturated oxime esters with P(O)H compounds to synthesize various phosphorylated pyrrolines.
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Yinwei Bao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Jinghui Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
| |
Collapse
|
20
|
Palladium-Catalyzed Isomerization-Coupling Reactions of Allyl Chloride with Amines to Generate Functionalized Phosphorus Derivatives. Catalysts 2018. [DOI: 10.3390/catal8050194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Yaragorla S, Dada R, Rajesh P, Sharma M. Highly Regioselective Synthesis of Oxindolyl-Pyrroles and Quinolines via a One-Pot, Sequential Meyer-Schuster Rearrangement, Anti-Michael Addition/C (sp3)-H Functionalization, and Azacyclization. ACS OMEGA 2018; 3:2934-2946. [PMID: 30023853 PMCID: PMC6044873 DOI: 10.1021/acsomega.8b00147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
A one-pot, sequential Meyer-Schuster (MS) rearrangement of oxindole-derived propargyl alcohols to the corresponding α,β-unsaturated enones and their anti-Michael addition, followed by intramolecular azacyclization is described in a highly regioselective manner using Ca(OTf)2 as the promoter. Further, we described the one-pot MS rearrangement, followed by C(sp3)-H functionalization of 2-methyl azaarenes at α-carbon of these doubly activated alkenes. Control experiments and computational calculations were performed to propose the reaction mechanism.
Collapse
|