1
|
Feng Q, Zhou Y, Xu H, Liu J, Wan Z, Wang Y, Yang P, Ye S, Zhang Y, Cao X, Cao D, Huang H. BN-embedded aromatic hydrocarbons: synthesis, functionalization and applications. Chem Soc Rev 2025. [PMID: 40392597 DOI: 10.1039/d5cs00147a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Substituting CC double bonds with B-N bonds in polycyclic aromatic hydrocarbons (PAHs) has emerged as a promising approach to advance and diversify organic functional materials. This structural modification not only imparts unique electronic and optical properties, but also enhances chemical stability, thereby opening new avenues for material design and applications. However, the widespread adoption of BN-fused aromatic hydrocarbons in practical applications is still in its nascent phase. This constraint stems primarily from the challenges in precisely tailoring molecular structures to optimize photophysical and electronic properties, thereby influencing their efficacy in targeted applications. Consequently, a comprehensive evaluation of historical, current, and prospective developments in BN-fused aromatic hydrocarbons is deemed essential. This review offers an in-depth overview of recent advancements in BN-fused aromatic hydrocarbons, focusing on synthetic strategies, fundamental properties, and emerging applications. Additionally, we elucidate the pivotal role of computational chemistry in directing the design, discovery, and optimization of these materials. Our objective is to foster interdisciplinary collaboration and stimulate innovative approaches to fully harness the potential of azaborinine chemistry across various fields, including organic optoelectronics, biomedicine, and related disciplines.
Collapse
Affiliation(s)
- Qiang Feng
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Ying Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Han Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Jianhua Liu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Zicheng Wan
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Yawei Wang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Pinghua Yang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Shan Ye
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Yiding Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Xiaohua Cao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application. Jiujiang University, Jiujiang 332005, China.
| |
Collapse
|
2
|
Choi S, Dong G. Rapid and Modular Access to Multifunctionalized 1,2-Azaborines via Palladium/Norbornene Cooperative Catalysis. J Am Chem Soc 2024; 146:9512-9518. [PMID: 38551167 PMCID: PMC11776437 DOI: 10.1021/jacs.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
1,2-Azaborines, a unique class of BN-isosteres of benzene, have attracted great interest across several fields. While significant advancements have been made in the postfunctionalization of 1,2-azaborines, challenges still exist for the selective functionalization of the C4 position and access to 1,2-azaborines with five or six independently installed substituents. Here we report a rapid and modular method for C3 and C4 difunctionalization of 1,2-azaborines using the palladium/norbornene (Pd/NBE) cooperative catalysis. Enabled by the C2 amide-substituted NBE, diverse 3-iodo-1,2-azaborines can be used as substrates, showing broad functional group tolerance. Besides ortho arylation, preliminary success of ortho alkylation has also been realized. In addition, a range of alkenes and nucleophiles can be employed for ipso C3 functionalization. The reaction is scalable, and various postfunctionalizations, including forming hexa-substituted 1,2-azaborines, have been achieved.
Collapse
Affiliation(s)
- Shinyoung Choi
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
3
|
Xu J, Qiu W, Zhang X, Wu Z, Zhang Z, Yang K, Song Q. Palladium-Catalyzed Atroposelective Kinetic C-H Olefination and Allylation for the Synthesis of C-B Axial Chirality. Angew Chem Int Ed Engl 2023; 62:e202313388. [PMID: 37840007 DOI: 10.1002/anie.202313388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
The direct C-H functionalization of 1,2-benzazaborines, especially asymmetric version, remains a great challenge. Here we report a palladium-catalyzed enantioselective C-H olefination and allylation reactions of 1,2-benzazaborines. This asymmetric approach is a kinetic resolution (KR), providing various C-B axially chiral 2-aryl-1,2-benzazaborines and 3-substituted 2-aryl-1,2-benzazaborines in generally high yields with excellent enantioselectivities (selectivity (S) factor up to 354). The synthetic potential of this reaction is showcased by late-stage modification of complex molecules, scale-up reaction, and applications.
Collapse
Affiliation(s)
- Jie Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Weihua Qiu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xu Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhihan Wu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhen Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
4
|
Fang X. Copper-catalyzed nitration of electron-deficient BN-naphthalene. Chem Commun (Camb) 2023; 59:12581-12584. [PMID: 37789819 DOI: 10.1039/d3cc04359b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Under Cu-catalysis, a regioselective nitration of 1,8-dihalogenated BN-naphthalene (ABN) compounds (4a-4c) has been established with the use of tert-butyl nitrite as the nitrating reagent. The syntheses of dihalo-ABN nitro products (6a-6c; halo = Cl, Br and I) were case-studied in conjunction with the first synthesis and characterization of diiodo-ABN compound 4c. The molecular structures of these compounds have been spectroscopically characterized and further confirmed by X-ray single crystal diffraction experiments. This method allows direct regioselective nitration of electron-deficient ABN systems, providing a step-economical entry to novel nitro-ABN structural motifs with potential applications in agrochemicals, materials sciences, and the medicinal and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiangdong Fang
- College of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, People's Republic of China.
| |
Collapse
|
5
|
Tian D, Shi G, Fan M, Guo X, Yuan Y, Wu S, Liu J, Zhang J, Xing S, Zhu B. Synthesis, Properties, and Regioselective Functionalization of 9,9a-BN Anthracene. Org Lett 2021; 23:8163-8168. [PMID: 34664965 DOI: 10.1021/acs.orglett.1c02843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel 9,9a-BN anthracene 5 has been synthesized by the Ru-catalyzed electrocyclization of BN-aromatic enynes. The photophysical properties of 5 are different from those of all-carbon anthracene and other reported BN-anthracenes. The reactivity of 5 has been investigated by treating 5 with organolithium compounds, Br2, or N-iodosuccinimide. The resulting halogenated compounds can be easily functionalized via cross-coupling reactions. UV-vis and fluorescence spectroscopy of 5 have been investigated to explore the photophysical properties of these BN-anthracenes.
Collapse
Affiliation(s)
- Dawei Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Guofei Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Mengmeng Fan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xiaobing Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yueqi Yuan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Sitian Wu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jinyu Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Juanyi Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
6
|
Bhattacharjee A, Davies GHM, Saeednia B, Wisniewski SR, Molander GA. Selectivity in the Elaboration of Bicyclic Borazarenes. Adv Synth Catal 2021; 363:2256-2273. [PMID: 34335130 PMCID: PMC8323665 DOI: 10.1002/adsc.202001384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Indexed: 12/14/2022]
Abstract
Among aromatic compounds, borazarenes represent a significant class of isosteres in which carbon-carbon bonds have been replaced by B-N bonds. Described herein is a summary of the selective reactions that have been developed for known systems, as well as a summary of computationally-based predictions of selectivities that might be anticipated in reactions of yet unrealized substructures.
Collapse
Affiliation(s)
- Ayan Bhattacharjee
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Geraint H M Davies
- Small Molecule Drug Development, Bristol Myers Squibb Company, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Borna Saeednia
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
7
|
Tian D, Zhang W, Shi G, Luo S, Chen Y, Chen W, Huang H, Xing S, Zhu B. Synthesis, structure and properties of semi-internally BN-substituted annulated thiophenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00534k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of semi-internally BN-substituted annulated thiophenes were synthesized from easily accessible 2,1-borazaronaphthalenes.
Collapse
Affiliation(s)
- Dawei Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Wenhao Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Guofei Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Sha Luo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Ying Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Wanying Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Huanan Huang
- School of Chemistry and Chemical Engineering; Jiangxi Province Engineering Research Center of Ecological Chemical Industry; Jiujiang Key Laboratory of Organosilicon Chemistry and Application
- Jiujiang University
- Jiujiang 332005
- People's Republic of China
| | - Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- People's Republic of China
| |
Collapse
|
8
|
Thabit MG, Mostafa AS, Selim KB, Elsayed MA, Nasr MN. Design, synthesis and molecular modeling of phenyl dihydropyridazinone derivatives as B-Raf inhibitors with anticancer activity. Bioorg Chem 2020; 103:104148. [DOI: 10.1016/j.bioorg.2020.104148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/25/2020] [Accepted: 07/26/2020] [Indexed: 12/29/2022]
|
9
|
Tian D, Li Q, Zhao Y, Wang Z, Li W, Xia S, Xing S, Zhu B, Zhang J, Cui C. Synthesis of bis-BN-Naphthalene-Fused Oxepins and Their Photoluminescence Including White-Light Emission. J Org Chem 2020; 85:526-536. [PMID: 31859499 DOI: 10.1021/acs.joc.9b02594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of novel bis-BN-naphthalene-fused oxepin derivatives were synthesized via a Pd-catalyzed tandem reaction from brominated 2,1-borazaronaphthalenes and cis-bis(boryl)alkenes. X-ray crystallographic analysis revealed that bis-BN-naphthalene-fused oxepins feature a planar framework. The electronic and photophysical properties of the novel BN-naphthalene-fused oxepins were investigated by UV-vis and fluorescence spectroscopies and density functional theory (DFT) calculations, which disclosed the distinct electronic and photophysical properties of the analogous hydrocarbon system. Interestingly, dual-fluorescent emissions were observed upon dissolving N-substituted derivatives 10-14 in dimethyl sulfoxide. Tunable emission colors especially for white-light emissions can be achieved by controlling the ratio of solvents, concentration, or temperature using only a single-molecule compound.
Collapse
Affiliation(s)
- Dawei Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Qian Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Yifan Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Zijia Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Wenbin Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Shuling Xia
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry , Cooperative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University , Tianjin 300071 , China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry , Cooperative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University , Tianjin 300071 , China
| |
Collapse
|
10
|
Huang H, Zhou Y, Wang M, Zhang J, Cao X, Wang S, Cao D, Cui C. Regioselective Functionalization of Stable BN‐Modified Luminescent Tetraphenes for High‐Resolution Fingerprint Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Huanan Huang
- School of Chemistry and Environmental EngineeringJiangxi Province Engineering Research Center of Ecological Chemical IndustryJiujiang University Jiujiang 332005 China
| | - Ying Zhou
- School of Chemistry and Environmental EngineeringJiangxi Province Engineering Research Center of Ecological Chemical IndustryJiujiang University Jiujiang 332005 China
| | - Meng Wang
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic ChemistryCooperative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai University Tianjin 300071 China
| | - Xiaohua Cao
- School of Chemistry and Environmental EngineeringJiangxi Province Engineering Research Center of Ecological Chemical IndustryJiujiang University Jiujiang 332005 China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Dapeng Cao
- School of Chemistry and Environmental EngineeringJiangxi Province Engineering Research Center of Ecological Chemical IndustryJiujiang University Jiujiang 332005 China
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic ChemistryCooperative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai University Tianjin 300071 China
| |
Collapse
|
11
|
Huang H, Zhou Y, Wang M, Zhang J, Cao X, Wang S, Cao D, Cui C. Regioselective Functionalization of Stable BN-Modified Luminescent Tetraphenes for High-Resolution Fingerprint Imaging. Angew Chem Int Ed Engl 2019; 58:10132-10137. [PMID: 31087592 DOI: 10.1002/anie.201903418] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/24/2019] [Indexed: 01/15/2023]
Abstract
A series of novel BN tetraphene derivatives have been prepared successfully for the first time via a post-functionalization strategy. The optical and electronic properties of these derivatives could be tuned systematically by the incorporation of different substituents on the main skeleton. The functionalized BN-containing luminogens have been explored for the detection of latent fingerprints (LFPs) on different substrates, including glass, aluminum foil, plastic, and ironware. This strategy provides great versatility in LFP imaging and good potential in elucidating the chemical information within LFPs, making the strategy valuable in forensic investigations.
Collapse
Affiliation(s)
- Huanan Huang
- School of Chemistry and Environmental Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, 332005, China
| | - Ying Zhou
- School of Chemistry and Environmental Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, 332005, China
| | - Meng Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Cooperative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Xiaohua Cao
- School of Chemistry and Environmental Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, 332005, China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dapeng Cao
- School of Chemistry and Environmental Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, 332005, China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry, Cooperative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| |
Collapse
|
12
|
McConnell CR, Haeffner F, Baggett AW, Liu SY. 1,2-Azaborine's Distinct Electronic Structure Unlocks Two New Regioisomeric Building Blocks via Resolution Chemistry. J Am Chem Soc 2019; 141:9072-9078. [PMID: 31082254 PMCID: PMC6609151 DOI: 10.1021/jacs.9b03611] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two new 1,2-azaborine building blocks that enable the broad diversification of previously not readily accessible C4 and C5 ring positions of the 1,2-azaborine heterocycle are developed. 1,2-Azaborine's distinct electronic structure allowed the resolution of a mixture of C4- and C5-borylated 1,2-azaborines. The connection between the electronic structure of C4 and C5 positions of 1,2-azaborine and their distinct reactivity patterns is revealed by a combination of reactivity studies and kinetic measurements that are supported by DFT calculations. Specifically, we show that oxidation by N-methylmorpholine N-oxide (NMO) is selective for the C4-borylated 1,2-azaborine, and the Ir-catalyzed deborylation is selective for the C5-borylated 1,2-azaborine via kinetically controlled processes. On the other hand, ligand exchange with diethanolamine takes place selectively with the C4-borylated isomer via a thermodynamically controlled process. These results represent the first examples for chemically distinguishing a mixture of two aryl mono-Bpin-substituted isomers.
Collapse
Affiliation(s)
- Cameron R. McConnell
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Fredrik Haeffner
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
13
|
Abengózar A, Sucunza D, García-García P, Sampedro D, Pérez-Redondo A, Vaquero JJ. A New Member of the BN-Phenanthrene Family: Understanding the Role of the B-N Bond Position. J Org Chem 2019; 84:7113-7122. [PMID: 31079459 DOI: 10.1021/acs.joc.9b00800] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,4-Dihydro-4-aza-3-boraphenanthrene, which shows the highest fluorescence quantum yield of all nonsubstituted BN-phenanthrenes reported to date (ϕF = 0.61), has been synthesized in only three steps (76% overall yield) from easily accessible 1-bromo-2-vinylnaphthalene, along with several substituted derivatives. The reactivity of these previously unknown BN-aromatic compounds toward organolithium compounds and bromine has been studied. This latter reaction affords bromo-substituted compounds that are suitable for further functionalization via Suzuki and Sonogashira couplings, with complete regioselectivity. The optical properties and excited state deactivation mechanisms of selected compounds were studied using computational methods.
Collapse
Affiliation(s)
- Alberto Abengózar
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares , Spain
| | - David Sucunza
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares , Spain
| | - Patricia García-García
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares , Spain
| | - Diego Sampedro
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ) , Universidad de La Rioja , Madre de Dios 53 , 26006 Logroño , Spain
| | - Adrián Pérez-Redondo
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares , Spain
| | - Juan J Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares , Spain
| |
Collapse
|
14
|
Abengózar A, García-García P, Sucunza D, Sampedro D, Pérez-Redondo A, Vaquero JJ. Synthesis, Functionalization, and Optical Properties of 1,2-Dihydro-1-aza-2-boraphenanthrene and Several Highly Fluorescent Derivatives. Org Lett 2019; 21:2550-2554. [DOI: 10.1021/acs.orglett.9b00448] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alberto Abengózar
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Patricia García-García
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - David Sucunza
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Diego Sampedro
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Adrián Pérez-Redondo
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| |
Collapse
|
15
|
Abstract
BN/CC isosterism has emerged as a viable strategy to expand the chemical space of organic molecules. In particular, the application of BN/CC isosterism to arenes has received significant attention due to the vast available chemical space provided by aromatic hydrocarbons. The synthetic efforts directed at assembling novel aromatic BN heterocycles have resulted in the discovery of new properties and functions in a variety of fields including biomedical research, medicinal chemistry, materials science, catalysis, and organic synthesis. This tutorial review specifically covers recent advances in synthetic technologies that functionalize assembled boron-nitrogen (BN) heterocycles and highlights their distinct reactivity and selectivity in comparison to their carbonaceous counterparts. It is intended to serve as a state-of-the-art compendium for readers who are interested in the reaction chemistry of BN heterocycles.
Collapse
Affiliation(s)
- Cameron R McConnell
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
| | | |
Collapse
|
16
|
Lim M, Kim H, Ban J, Son J, Lee JK, Min SJ, Lee SU, Rhee H. Palladium-Catalyzed Carbonylative Coupling Reactions of N
,N
-Bis(methanesulfonyl)amides through C-N Bond Cleavage. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Minkyung Lim
- Department of Bionanotechnology; Hanyang University; Sangnok gu Hanyang Daehak-ro 55 15588 Ansan Gyeonggi-do Republic of Korea
| | - Hyeji Kim
- Department of Bionanotechnology; Hanyang University; Sangnok gu Hanyang Daehak-ro 55 15588 Ansan Gyeonggi-do Republic of Korea
| | - Jaeyoung Ban
- Department of Bionanotechnology; Hanyang University; Sangnok gu Hanyang Daehak-ro 55 15588 Ansan Gyeonggi-do Republic of Korea
| | - Junghan Son
- Department of Applied Chemistry; Hanyang University; Sangnok-gu Hanyang Daehak-ro 55 15588 Ansan Gyeonggi-do Republic of Korea
| | - Jae Kyun Lee
- Center for Neuro-Medicine; Korea Institute of Science and Technology (KIST); Seongbuk-gu Hwarangro 14-gil 5 136-791 Seoul Republic of Korea
| | - Sun-Joon Min
- Department of Applied Chemistry; Hanyang University; Sangnok-gu Hanyang Daehak-ro 55 15588 Ansan Gyeonggi-do Republic of Korea
| | - Sang Uck Lee
- Department of Bionanotechnology; Hanyang University; Sangnok gu Hanyang Daehak-ro 55 15588 Ansan Gyeonggi-do Republic of Korea
- Department of Applied Chemistry; Hanyang University; Sangnok-gu Hanyang Daehak-ro 55 15588 Ansan Gyeonggi-do Republic of Korea
| | - Hakjune Rhee
- Department of Bionanotechnology; Hanyang University; Sangnok gu Hanyang Daehak-ro 55 15588 Ansan Gyeonggi-do Republic of Korea
- Department of Applied Chemistry; Hanyang University; Sangnok-gu Hanyang Daehak-ro 55 15588 Ansan Gyeonggi-do Republic of Korea
| |
Collapse
|
17
|
Sarief A, Haque SKM, Feroze SM, Arifuddin M. Werner transition-metal complex (WTMC)-mediated mild and efficient chemo-selective acylation of phenols and anilines under solvent-free condition. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abdulla Sarief
- Department of Chemical and Process Engineering Technology; Jubail Industrial College; Jubail Saudi Arabia
| | - SK Manirul Haque
- Department of Chemical and Process Engineering Technology; Jubail Industrial College; Jubail Saudi Arabia
| | - Syed Mudabbir Feroze
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad India
| |
Collapse
|
18
|
Abengózar A, Fernández-González MA, Sucunza D, Frutos LM, Salgado A, García-García P, Vaquero JJ. C-H Functionalization of BN-Aromatics Promoted by Addition of Organolithium Compounds to the Boron Atom. Org Lett 2018; 20:4902-4906. [PMID: 30070487 DOI: 10.1021/acs.orglett.8b02040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Addition of an organolithium compound to a BN-phenanthrene with embedded B and N atoms is proposed to result in coordination of RLi to the boron atom. This coordination, supported by NMR spectroscopy and DFT calculations, increases the nucleophilicity of the system in the β position to the N atom and is therefore a useful tool for promoting regioselective C-H functionalization of BN aromatics.
Collapse
Affiliation(s)
- Alberto Abengózar
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares , Madrid , Spain
| | - Miguel Angel Fernández-González
- Departamento de Química Analítica, Química Física e Ingeniería Química, Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares , Madrid , Spain
| | - David Sucunza
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares , Madrid , Spain
| | - Luis Manuel Frutos
- Departamento de Química Analítica, Química Física e Ingeniería Química, Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares , Madrid , Spain
| | - Antonio Salgado
- Centro de Espectroscopía de Resonancia Magnética Nuclear (CERMN), CAI Químicas , Universidad de Alcalá , 28805 Alcalá de Henares , Madrid , Spain
| | - Patricia García-García
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares , Madrid , Spain
| | - Juan J Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares , Madrid , Spain
| |
Collapse
|