1
|
Friedrich LM, Lindhorst TK. Orthogonal photoswitching of heterobivalent azobenzene glycoclusters: the effect of glycoligand orientation in bacterial adhesion. Beilstein J Org Chem 2025; 21:736-748. [PMID: 40231321 PMCID: PMC11995721 DOI: 10.3762/bjoc.21.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
Carbohydrate recognition is fundamental to a plethora of cellular processes and hence the elucidation of the structural determinants of the recognition process is a prerequisite for understanding and manipulating carbohydrate-protein interactions, such as in the inhibition of carbohydrate-specific bacterial adhesion. For receptor binding, glycoligands have to be properly oriented in three-dimensional space and additionally, secondary interactions exerted by multivalent glycoligands have an effect on affinity. A recently introduced orthogonally photoswitchable heterobivalent azobenzene Glc/Man glycocluster was utilized to examine these aspects of carbohydrate recognition in a bacterial adhesion-inhibition assay. The measured results were systematically contextualized employing new reference compounds such as the respective homobivalent Man/Man glycocluster. An in-depth study comprising the analysis of the photochromic properties and the potential as inhibitors of bacterial adhesion of the synthetic glycophotoswitches in their different isomeric states led to new insights into the role of ligand orientation in carbohydrate recognition. The experimental results were underpinned by molecular modeling.
Collapse
Affiliation(s)
- Leon M Friedrich
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3–4, 24118 Kiel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3–4, 24118 Kiel, Germany
| |
Collapse
|
2
|
Li M, Xiang X, Zhou Z, Zhou X, Yang M, Zhao Y, Zheng X, Tao H. Copper-Catalyzed Glycosylation Protocol Based on 1,4-Naphthoquinone-Derived Thioglycosides. Org Lett 2025; 27:2262-2267. [PMID: 40000370 DOI: 10.1021/acs.orglett.5c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
We report a copper-catalyzed glycosylation protocol utilizing 2-(para-methoxyphenylethynyl)-1,4-naphthoquinone-3-thioglycosides (NQTs) as effective glycosyl donors. These novel donors, characterized by a naphthoquinone scaffold, enable rapid and efficient preparation through a one-pot, two-step synthesis. Additionally, they are efficiently activated by cost-effective Cu(II) salts, facilitating glycosylation with a broad range of substrates. The practicality of NQT donors is further demonstrated by their compatibility with latent-active glycosylation strategies and their applicability in the versatile one-pot synthesis of saccharides.
Collapse
Affiliation(s)
- Mengyu Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xi Xiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zijie Zhou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Zhou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meifang Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yitian Zhao
- Department of Pharmaceutical Engineering, Zhejiang Pharmaceutical University, Ningbo 315100, China
| | - Xiangwei Zheng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Houchao Tao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Petit G, Malherbe C, Bianchi P, Monbaliu JCM. An innovative chalcogenide transfer agent for improved aqueous quantum dot synthesis. Chem Sci 2024; 15:d4sc01135j. [PMID: 39129774 PMCID: PMC11309086 DOI: 10.1039/d4sc01135j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
An innovative approach to chalcogenide precursor synthesis and their subsequent use for the production of CdX (X = S, Se, Te) quantum dots (QDs) in water under scalable and intensified continuous flow conditions is introduced. Herein, tris(2-carboxyethyl)phosphine (TCEP) is identified as a novel, efficient and water-soluble vehicle for chalcogenide transfer to form CdX QDs under aqueous conditions. A comprehensive exploration of critical process parameters, including pH, chalcogen excess, and residence time, utilizing a Design of Experiments (DoE) approach is reported. Reaction kinetics are investigated in real-time using a combination of in situ Raman spectroscopy and in-line 31P NMR spectroscopy. The conversion of TCEP into TCEP[double bond, length as m-dash]X (X = S, Se, Te) species is seamlessly adapted to continuous flow conditions. TCEP[double bond, length as m-dash]X precursors are subsequently employed in the synthesis of CdX QDs. Scalability trials are successfully demonstrated, with experiments conducted at flow rates of up to 80 mL min-1 using a commercially available mesofluidic flow reactor with favorable metrics. Furthermore, biocompatible and aqueous CdSe/ZnS core-shell QDs are for the first time prepared in flow within a fully concatenated process. These results emphasize the potential for widespread biological or industrial applications of this novel protocol.
Collapse
Affiliation(s)
- Guillaume Petit
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège B-4000 Liège (Sart Tilman) Belgium https://www.citos.uliege.be/
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège B-4000 Liège (Sart Tilman) Belgium
| | - Pauline Bianchi
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège B-4000 Liège (Sart Tilman) Belgium https://www.citos.uliege.be/
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège B-4000 Liège (Sart Tilman) Belgium https://www.citos.uliege.be/
- WEL Research Institute Avenue Pasteur 6 B-1300 Wavre Belgium
| |
Collapse
|
4
|
Porter J, Noble AR, Signoret N, Fascione MA, Miller GJ. Exploring a Gemcitabine-Glucose Hybrid as a Glycoconjugate Prodrug. ACS OMEGA 2024; 9:31703-31713. [PMID: 39072123 PMCID: PMC11270703 DOI: 10.1021/acsomega.4c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Nucleoside analogues are established treatments for cancer and viral infection. Gemcitabine is a commonly employed nucleoside analogue displaying anticancer properties against a range of tumor types but is rapidly inactivated in vivo. Efforts to bolster its pharmaceutical profile include investigating prodrug forms. Herein, we explore the synthesis of a novel glucose-gemcitabine glycoconjugate, targeting uptake via glucose transport. We select a redox-reactive disulfide linker for conjugation of gemcitabine (through N4-cytosine) with glucose. Evaluation of this glycoconjugate reveals increased toxicity against androgen insensitive PC3 prostate cancer cells compared to LNCaP (which have lower levels of glucose transporter GLUT1). These preliminary results suggest that glycoconjugation of nucleosides may be an effective approach to targeting cells which display increased uptake and metabolism of glucose.
Collapse
Affiliation(s)
- Jack Porter
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Amanda R. Noble
- Hull
York Medical School, University of York, Heslington, York YO10
5DD, U.K.
| | - Nathalie Signoret
- Hull
York Medical School, University of York, Heslington, York YO10
5DD, U.K.
| | - Martin A. Fascione
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
5
|
Banisalman KF, Polykandritou A, Barnieh FM, Ribeiro Morais G, Falconer RA. Chemoselective Solution- and Solid-Phase Synthesis of Disulfide-Linked Glycopeptides. J Org Chem 2022; 87:14026-14036. [PMID: 36265181 PMCID: PMC9638999 DOI: 10.1021/acs.joc.2c01651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glycosylation of peptides and proteins is a widely employed strategy to mimic important post-translational modifications or to modulate the physicochemical properties of peptides to enhance their delivery. Furthermore, glycosylation via a sulfur atom imparts increased chemical and metabolic stability to the resulting glycoconjugates. Herein, we report a simple and chemoselective procedure to prepare disulfide-linked glycopeptides. Acetate-protected glycosylsulfenyl hydrazines are shown to be highly reactive with the thiol group of cysteine residues within peptides, both in solution and as part of conventional solid-phase peptide synthesis protocols. The efficiency of this glycosylation methodology with unprotected carbohydrates is also demonstrated, which avoids the need for deprotection steps and further extends its utility, with disulfide-linked glycopeptides produced in excellent yields. Given the importance of glycosylated peptides in structural glycobiology, pharmacology, and therapeutics, the methodology outlined provides easy access to disulfide-linked glycopeptides as molecules with multiple biological applications.
Collapse
|
6
|
Venkatesh R, Tiwari V, Kandasamy J. Copper(I)-Catalyzed Sandmeyer-Type S-Arylation of 1-Thiosugars with Aryldiazonium Salts under Mild Conditions. J Org Chem 2022; 87:11414-11432. [PMID: 35994736 DOI: 10.1021/acs.joc.2c00930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Preparation of S-aryl thioglycosides from 1-thiosugars via S-arylation was demonstrated under mild reaction conditions. A wide range of protected and unprotected 1-thiosugars derived from glucose, glucosamine, galactose, mannose, ribose, maltose, and lactose underwent cross-coupling reactions with functionalized aryldiazonium salts in the presence of copper(I) chloride and DBU. The desired products were obtained in 55-88% yields within 5 min. Various functional groups, including halogens, were tolerated under standard reaction conditions. Synthesis of the biologically relevant antidiabetic dapagliflozin S-analogue and arbutin S-analogues (tyrosinase inhibitors) was demonstrated.
Collapse
Affiliation(s)
- Rapelly Venkatesh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Varsha Tiwari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
7
|
Feng GJ, Luo T, Guo YF, Liu CY, Dong H. Concise Synthesis of 1-Thioalkyl Glycoside Donors by Reaction of Per-O-acetylated Sugars with Sodium Alkanethiolates under Solvent-Free Conditions. J Org Chem 2022; 87:3638-3646. [DOI: 10.1021/acs.joc.1c02171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guang-Jing Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Tao Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Yang-Fan Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Chun-Yang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
8
|
Kundu M, Misra AK. Direct Synthesis of Unsymmetrical Glycosyl Disulfides from Glycosyl Bromides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Monalisa Kundu
- Bose Institute Division of Molecular Medicine P-1/12, C.I.T. Scheme VII M Kolkata 700054 India
| | - Anup Kumar Misra
- Bose Institute Division of Molecular Medicine P-1/12, C.I.T. Scheme VII M Kolkata 700054 India
| |
Collapse
|
9
|
Feng G, Wang S, Lv J, Luo T, Wu Y, Dong H. Improved Synthesis of 1‐Glycosyl Thioacetates and Its Application in the Synthesis of Thioglucoside Gliflozin Analogues. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guang‐Jing Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
| | - Shuang‐Shuang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
| | - Jian Lv
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
| | - Tao Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
| | - Yuzhou Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Huazhong University of Science & Technology Luoyu Road 1037 Wuhan 430074 PR China
| |
Collapse
|
10
|
Ribeiro Morais G, Falconer RA. Glycosyl disulfides: importance, synthesis and application to chemical and biological systems. Org Biomol Chem 2021; 19:82-100. [DOI: 10.1039/d0ob02079f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This review explores methodologies for the preparation of glycosyl disulfides, their utility as intermediates in carbohydrate synthesis, and evaluates their biological impact in glycoscience and beyond.
Collapse
Affiliation(s)
- Goreti Ribeiro Morais
- Institute of Cancer Therapeutics
- Faculty of Life Sciences
- University of Bradford
- Bradford BD7 1DP
- UK
| | - Robert A. Falconer
- Institute of Cancer Therapeutics
- Faculty of Life Sciences
- University of Bradford
- Bradford BD7 1DP
- UK
| |
Collapse
|
11
|
Ge J, Zhang L, Pu L, Zhang Y, Pei Z, Dong H. The Oxidation of
S
‐Acetyl by Nitrite: Mechanism and Application. ChemistrySelect 2020. [DOI: 10.1002/slct.202003566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian‐Tao Ge
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
- School of Chemistry and Chemical Engineering Hubei Polytechnic University Guilinbei Road 16 Huangshi 435003 P. R. China
| | - Le‐Feng Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
| | - Liang Pu
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi P. R. China
| | - Ying Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
| | - Zhi‐Chao Pei
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi P. R. China
| | - Hai Dong
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
| |
Collapse
|
12
|
Kern MK, Pohl NLB. Automated Solution-Phase Synthesis of S-Glycosides for the Production of Oligomannopyranoside Derivatives. Org Lett 2020; 22:4156-4159. [PMID: 32432478 PMCID: PMC7493207 DOI: 10.1021/acs.orglett.0c01236] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioglycosides are more resistant to enzymatic hydrolysis than their O-linked counterparts, thereby becoming attractive targets for carbohydrate-based therapeutic development. We report the first development of methods for the site-selective incorporation of S-linkages into automated solution-phase oligosaccharide protocols. The protocols were shown to be compatible with the formation of S- or O-glycosides for the synthesis of mannopyranoside trimmers that incorporate both S- and O-linkages to allow the selective incorporation of an S-glycoside in various stages in an automated program.
Collapse
Affiliation(s)
- Mallory K Kern
- Department of Chemistry, Indiana University, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| |
Collapse
|
13
|
Luo T, Zhang Y, Xi J, Lu Y, Dong H. Improved Synthesis of Sulfur-Containing Glycosides by Suppressing Thioacetyl Migration. Front Chem 2020; 8:319. [PMID: 32391332 PMCID: PMC7191076 DOI: 10.3389/fchem.2020.00319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Complex mixtures were often observed when we attempted to synthesize 4-thio- and 2,4-dithio-glycoside derivatives by double parallel and double serial inversion, thus leading to no or low yields of target products. The reason was later found to be that many unexpected side products were produced when a nucleophile substituted the leaving group on the substrate containing the thioacetate group. We hypothesized that thioacetyl migration is prone to occur due to the labile thioacetate group even under weak basic conditions caused by the nucleophile, leading to this result. Therefore, we managed to inhibit the generation of thiol groups from thioacetate groups by the addition of an appropriate amount of conjugate acid/anhydride, successfully improving the synthesis of 4-thio- and 2,4-dithio-glycoside derivatives. The target products which were previously difficult to synthesize, were herein obtained in relatively high yields. Finally, 4-deoxy- and 2,4-dideoxy-glycoside derivatives were efficiently synthesized through the removal of thioacetate groups under UV light, starting from 4-thio- and 2,4-dithio-glycoside derivatives.
Collapse
Affiliation(s)
- Tao Luo
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jiafeng Xi
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, China
| | - Yuchao Lu
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Kelemen V, Csávás M, Hotzi J, Herczeg M, Poonam, Rathi B, Herczegh P, Jain N, Borbás A. Photoinitiated Thiol-Ene Reactions of Various 2,3-Unsaturated O-, C- S- and N-Glycosides - Scope and Limitations Study. Chem Asian J 2020; 15:876-891. [PMID: 32003941 PMCID: PMC7154673 DOI: 10.1002/asia.201901560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/08/2020] [Indexed: 12/13/2022]
Abstract
The photoinitiated thiol-ene addition reaction is a highly stereo- and regioselective, and environmentally friendly reaction proceeding under mild conditions, hence it is ideally suited for the synthesis of carbohydrate mimetics. A comprehensive study on UV-light-induced reactions of 2,3-unsaturated O-, C-, S- and N-glycosides with various thiols was performed. The effect of experimental parameters and structural variations of the alkenes and thiols on the efficacy and regio- and stereoselectivity of the reactions was systematically studied and optimized. The type of anomeric heteroatom was found to profoundly affect the reactivity of 2,3-unsaturated sugars in the thiol-ene couplings. Hydrothiolation of 2,3-dideoxy O-glycosyl enosides efficiently produced the axially C2-S-substituted addition products with high to complete regioselectivity. Moderate efficacy and varying regio- and stereoselectivity were observed with 2,3-unsaturated N-glycosides and no addition occurred onto the endocyclic double bond of C-glycosides. Upon hydrothiolation of 2,3-unsaturated S-glycosides, the addition of thiyl radicals was followed by elimination of the thiyl aglycone resulting in 3-S-substituted glycals.
Collapse
Affiliation(s)
- Viktor Kelemen
- Department of Pharmaceutical ChemistryUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
- Doctoral School of Pharmaceutical SciencesUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
| | - Magdolna Csávás
- Department of Pharmaceutical ChemistryUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
| | - Judit Hotzi
- Department of Pharmaceutical ChemistryUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical ChemistryUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Research Group for Oligosaccharide Chemistry of the Hungarian Academy of SciencesUniversity of DebrecenH-4032DebrecenHungary
| | - Poonam
- Department of Chemistry Miranda HouseUniversity of DelhiIndia
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery Department of Chemistry Hansraj CollegeUniversity of DelhiIndia
| | - Pál Herczegh
- Department of Pharmaceutical ChemistryUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
| | - Nidhi Jain
- Department of ChemistryIndian Institute of TechnologyNew Delhi110016India
| | - Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of Debrecen4032DebrecenEgyetem tér 1Hungary
| |
Collapse
|
15
|
Lv J, Zhu JJ, Liu Y, Dong H. Regioselective Sulfonylation/Acylation of Carbohydrates Catalyzed by FeCl 3 Combined with Benzoyltrifluoroacetone and Its Mechanism Study. J Org Chem 2020; 85:3307-3319. [PMID: 31984732 DOI: 10.1021/acs.joc.9b03128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A catalytic amount of FeCl3 combined with benzoyl trifluoroacetone (Hbtfa) (FeCl3/Hbtfa = 1/2) was used to catalyze sulfonylation/acylation of diols and polyols using diisopropylethylamine (DIPEA) or potassium carbonate (K2CO3) as a base. The catalytic system exhibited high catalytic activity, leading to excellent isolated yields of sulfonylation/acylation products with high regioselectivities. Mechanism studies indicated that FeCl3 initially formed [Fe(btfa)3] (btfa = benzoyl trifluoroacetonate) with twice the amount of Hbtfa under basic conditions in the solvent acetonitrile at room temperature. Then, Fe(btfa)3 and two hydroxyl groups of the substrates formed a five- or six-membered ring intermediate in the presence of the base. The subsequent reaction between the cyclic intermediate and a sulfonylation reagent led to the selective sulfonylation of the substrate. All key intermediates were captured in the high-resolution mass spectrometry assay, therefore demonstrating this mechanism for the first time.
Collapse
Affiliation(s)
- Jian Lv
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Jia-Jia Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Yu Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| |
Collapse
|
16
|
Lv J, Luo T, Zou D, Dong H. Using DMF as Both a Catalyst and Cosolvent for the Regioselective Silylation of Polyols and Diols. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jian Lv
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Tao Luo
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering; Zhengzhou University; 450052 Zhengzhou P. R. China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| |
Collapse
|
17
|
Ge JT, Zhou L, Luo T, Lv J, Dong H. A One-Pot Method for Removal of Thioacetyl Group via Desulfurization under Ultraviolet Light To Synthesize Deoxyglycosides. Org Lett 2019; 21:5903-5906. [PMID: 31310551 DOI: 10.1021/acs.orglett.9b02033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We herein developed an efficient method for removing thioacetyl to synthesize acylated deoxy glycosides in a one-pot reaction, where the thioacetyl was selectively deacetylated by hydrazine hydrate in DMF within 2-5 min at room temperature, followed by desulfurization under UV light for 1-2 h in the presence of TCEP·HCl. The method was then used to synthesize 2-deoxy glycosides with absolute α/β-configuration via stereoselective control of C-2 thioacetate in glycosylation.
Collapse
Affiliation(s)
- Jian-Tao Ge
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China.,School of Chemistry and Chemical Engineering , Hubei Polytechnic University , Guilinbei Road 16 , Huangshi , 435003 , P. R. China
| | - Lang Zhou
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China
| | - Tao Luo
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China
| | - Jian Lv
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China
| | - Hai Dong
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China
| |
Collapse
|
18
|
Ibrahim N, Alami M, Messaoudi S. Recent Advances in Transition-Metal-Catalyzed Functionalization of 1-Thiosugars. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nada Ibrahim
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| |
Collapse
|