1
|
Li Q, Zhu ZQ, Zhang WY, Le ZG, Xie ZB. Visible-light-induced decarboxylative cascade cyclization of acryloylbenzamides with N-hydroxyphthalimide esters via EDA complexes. Org Biomol Chem 2024; 22:965-969. [PMID: 38205855 DOI: 10.1039/d3ob01970e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A visible-light-induced decarboxylative cascade reaction of acryloylbenzamides with alkyl N-hydroxyphthalimide (NHP) esters for the synthesis of various 4-alkyl isoquinolinediones mediated by triphenylphosphine (PPh3) and sodium iodide (NaI) was developed. This operationally simple protocol proceeded via the photoactivation of electron donor-acceptor (EDA) complexes between N-hydroxyphthalimide esters and NaI/PPh3, resulting in multiple carbon-carbon bond formations without the use of precious metal complexes or synthetically elaborate organic dyes, which provided an alternative practical approach to synthesize diverse isoquinoline-1,3(2H,4H)-dione derivatives.
Collapse
Affiliation(s)
- Qing Li
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Zhi-Qiang Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Wen-Yi Zhang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Zhang-Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Zong-Bo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
2
|
Qian W, Schreiner PR, Mardyukov A. Preparation and Photochemistry of Parent Triplet Vinylarsinidene. J Am Chem Soc 2024; 146:930-935. [PMID: 38143310 DOI: 10.1021/jacs.3c11432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Vinyl pnictinidenes are an elusive family of molecules that have been suggested as key intermediates in multiple chemical reactions and commonly display a predisposition toward open-shell electronic ground states (as is evident from quantum chemical computations). However, owing to their expected extremely high reactivity, no vinyl pnictinidene has ever been isolated and characterized spectroscopically. Here, we report the synthesis and spectroscopic characterization of vinylarsinidene, a higher congener of vinylnitrene. As we demonstrate, triplet vinylarsinidene can be prepared through the low-temperature photolysis of diazidovinylarsine at 10 K in an argon matrix. The title compound can also be generated through high-vacuum flash pyrolysis of the diazide at 700 °C and trapped analogously. Triplet vinylarsinidene was characterized by IR and UV/vis spectroscopy and displayed remarkably rich unimolecular photochemistry. Upon selective photoirradiation, it rearranges to vinylidenearsine, 2H-arsirene, triplet ethynylarsinidene or an arsinidene (H-As) acetylene complex. The formation mechanisms of these products were rationalized with DFT and CASPT2 computations.
Collapse
Affiliation(s)
- Weiyu Qian
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Artur Mardyukov
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
3
|
Kiprova N, Desnoyers M, Narobe R, Klufts-Edel A, Chaud J, König B, Compain P, Kern N. Towards a General Access to 1-Azaspirocyclic Systems via Photoinduced, Reductive Decarboxylative Radical Cyclizations. Chemistry 2023:e202303841. [PMID: 38084823 DOI: 10.1002/chem.202303841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Indexed: 01/13/2024]
Abstract
A convenient and versatile approach to important 1-azaspirocyclic systems relevant to medicinal chemistry and natural products is reported herein. The main strategy relies on a reductive decarboxylative cyclization of redox-active esters which can be rapidly assembled from abundant cyclic azaacids and tailored acceptor sidechains, with a focus on alkyne acceptors enabling the generation of useful exo-alkene moieties. Diastereoconvergent variants were studied and could be achieved either through remote stereocontrol or conformational restriction in bicyclic carbamate substrates. Two sets of metal-free photocatalytic conditions employing inexpensive eosin Y were disclosed and studied experimentally to highlight key mechanistic divergences.
Collapse
Affiliation(s)
- Natalia Kiprova
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Marine Desnoyers
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Rok Narobe
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Germany
| | - Arthur Klufts-Edel
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Juliane Chaud
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Germany
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Nicolas Kern
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
4
|
Okamura H, Iida M, Kaneyama Y, Nagatsugi F. o-Nitrobenzyl Oxime Ethers Enable Photoinduced Cyclization Reaction to Provide Phenanthridines under Aqueous Conditions. Org Lett 2023; 25:466-470. [PMID: 36629406 DOI: 10.1021/acs.orglett.2c04015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this paper, we describe a novel N-O photolysis of o-nitrobenzyl oxime ethers that enables the synthesis of phenanthridines via intramolecular cyclization reactions. Without the use of additional photocatalysts or photosensitizers, the process proceeds with an efficiency of ≤96% upon exposure of the sample to near-visible light (405 nm) under aqueous conditions. Through the photoinduced production of a fluorescent phenanthridine derivative in HeLa cells, the progress of the reaction under biological conditions was demonstrated. This photoinduced cyclization reaction could be used as a different photochemical instrument to control biological processes by inducing the production of bioactive molecules.
Collapse
Affiliation(s)
- Hidenori Okamura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Momoka Iida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yui Kaneyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
5
|
Gholami F, Yousefnejad F, Larijani B, Mahdavi M. Vinyl azides in organic synthesis: an overview. RSC Adv 2023; 13:990-1018. [PMID: 36686934 PMCID: PMC9811501 DOI: 10.1039/d2ra06726a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Among organic azides, vinyl azides have attracted significant attention, because of their unique properties in organic synthesis, which led to reports of many types of research on this versatile conjugated azide in recent years. This magical precursor can also be converted into intermediates such as iminyl radicals, 2H-azirines, iminyl metal complexes, nitrilium ions, and iminyl ions, making this compound useful in heterocycle synthesis.
Collapse
Affiliation(s)
- Fateme Gholami
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Faeze Yousefnejad
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
6
|
Paveliev SA, Segida OO, Mulina OM, Krylov IB, Terent’ev AO. Decatungstate-Catalyzed Photochemical Synthesis of Enaminones from Vinyl Azides and Aldehydes. Org Lett 2022; 24:8942-8947. [DOI: 10.1021/acs.orglett.2c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Stanislav A. Paveliev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Oleg O. Segida
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Olga M. Mulina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Igor B. Krylov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander O. Terent’ev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
7
|
Liu L, Zhang Q, Wang C. Redox-Neutral Generation of Iminyl Radicals by N-Heterocyclic Carbene Catalysis: Rapid Access to Phenanthridines from Vinyl Azides. Org Lett 2022; 24:5913-5917. [PMID: 35925779 DOI: 10.1021/acs.orglett.2c02118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An N-heterocyclic carbene-catalyzed oxidant-, metal- and light-free iminyl radical generation pathway stemming from the reaction of vinyl azide and α-bromo ester is uncovered. This newly developed methodology is successfully applied to the redox-neutral construction of a number of diversified phenanthridine derivatives with nice functional group compatibility. Insights from the mechanism study reveal that this NHC-catalyzed transformation potentially proceeds through an alkyl radical addition-initiated HAS process, with the iminyl radical as an active intermediate.
Collapse
Affiliation(s)
- Lixia Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong511443, China
| | - Qijing Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong511443, China
| | - Chengming Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong511443, China
| |
Collapse
|
8
|
Kshirsagar N, Sonawane R, Pathan S, Kamble G, Pal Singh G. A Review on Synthetic Approaches of Phenanthridine. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210218211424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The phenanthridine family is widely found in medicinal chemistry and material science because
of the biological activity and its presence in a variety of significant natural products and synthetic
dye stuffs. The phenanthridine has many clinical applications, for e.g., being used as an anticancer agent,
possessing antibacterial, antiprotozoal, pharmaceutical, and optoelectronic properties. Many methods
have been reported for the synthesis of phenanthridine and phenanthridine alkaloids, such as Pd catalyzed
C-C bond formation, a reaction involving C-H activation, radical, microwave-assisted, transition
metal-catalyzed, one-pot cascade, benzyne mediated, photochemical, hypervalent iodine promoted methods,
etc. Here, we have summarized the literature data from 2014 to the present concerning novel or
improved synthetic approaches.
Collapse
Affiliation(s)
| | | | - Sultan Pathan
- Department of Chemistry, Bhupal Nobles
University, Udaipur, Rajasthan, India
| | - Ganesh Kamble
- Department of Chemistry, Osaka University, ISIR 8-1 Mihogaoka, Ibaraki,
Osaka 567-0047, Japan
| | - Girdhar Pal Singh
- Department of Chemistry, Bhupal Nobles
University, Udaipur, Rajasthan, India
| |
Collapse
|
9
|
Tripathy AR, A RR, Kumar A, Yatham VR. Photocatalyzed alkylative cyclization of 2-isocyanobiphenyls with unactivated alkyl iodides. Org Biomol Chem 2022; 20:3136-3144. [PMID: 35343547 DOI: 10.1039/d2ob00314g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report the first photocatalyzed radical cascade cyclization of 2-isocyanobiaryls with unactivated alkyl iodides. This simple protocol operates under mild reaction conditions and affords 6-alkyl phenanthridines in good yields. To elucidate the reaction mechanism, Stern-Volmer quenching studies were carried out and these studies revealed that the photocatalyst is not directly involved in a single electron transfer process with the alkyl iodide.
Collapse
Affiliation(s)
- Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), 695551, India.
| | - Rizwana Rahmathulla A
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), 695551, India.
| | - Amit Kumar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), 695551, India.
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), 695551, India.
| |
Collapse
|
10
|
Utilization of photocatalysts in decarboxylative coupling of carboxylic N-hydroxyphthalimide (NHPI) esters. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Visible-light-promoted radical alkylation/cyclization of allylic amide with N-hydroxyphthalimide ester: Synthesis of oxazolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Zhan Y, Dai C, Zhu Z, Liu P, Sun P. Electrochemical Decarboxylative Cyclization of α‐Amino‐Oxy Acids to Access Phenanthridine Derivatives. Chem Asian J 2022; 17:e202101388. [DOI: 10.1002/asia.202101388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yanling Zhan
- Nanjing Normal University Chemistry Nanjing CHINA
| | - Changhui Dai
- Nanjing Normal University Chemistry Nanjing CHINA
| | - Zitong Zhu
- Nanjing Normal University Chemistry Nanjing CHINA
| | - Ping Liu
- Nanjing Normal University Chemistry Nanjing CHINA
| | - Peipei Sun
- Nanjing Normal University Chemistry Ninghai Road 210097 Nanjing CHINA
| |
Collapse
|
13
|
Luo M, Zhang Y, Fang P, Li Y, Qi C, Li Y, Shen R, Cheng K, Wang H. H 2O 2-mediated room temperature synthesis of 2-arylacetophenones from arylhydrazines and vinyl azides in water. Org Biomol Chem 2021; 20:630-635. [PMID: 34937078 DOI: 10.1039/d1ob02023d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An environmentally benign, cost-efficient and practical methodology for the room temperature synthesis of 2-arylacetophenones in water has been discovered. The facile and efficient transformation involves the oxidative radical addition of arylhydrazines with α-aryl vinyl azides in the presence of H2O2 (as a radical initiator) and PEG-800 (as a phase-transfer catalyst). From the viewpoint of green chemistry and organic synthesis, the present protocol is of great significance because of using cheap, non-toxic and readily available starting materials and reagents as well as amenability to gram-scale synthesis, which provides an attractive strategy to access 2-arylacetophenones.
Collapse
Affiliation(s)
- Mengqiang Luo
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.,School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Yaohong Zhang
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Ping Fang
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Yan Li
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Chenze Qi
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Yong Li
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Runpu Shen
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Kai Cheng
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Hai Wang
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| |
Collapse
|
14
|
Jiao MJ, Hu Q, Hu XQ, Xu PF. Visible-Light-Promoted Multistep Tandem Reaction of Vinyl Azides toward the Formation of 1-Tetralones. J Org Chem 2021; 86:17156-17163. [PMID: 34794309 DOI: 10.1021/acs.joc.1c02261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-driven multistep tandem reaction between vinyl azides and alkyl bromides has been developed leading to the formation of tetralone skeletons under mild conditions, which can be easily scaled up to the gram scale. Various 1-tetralone derivatives are synthesized and transformed into desired products in good to high yields.
Collapse
Affiliation(s)
- Meng-Jie Jiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qiang Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
15
|
Devi L, Pokhriyal A, Shekhar S, Kant R, Mukherjee S, Rastogi N. Organo‐photocatalytic Synthesis of 6‐
β
‐Disubstituted Phenanthridines from
α
‐Diazo‐
β‐
Keto Compounds and Vinyl Azides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lalita Devi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ayushi Pokhriyal
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Shashi Shekhar
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Saptarshi Mukherjee
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
16
|
Guo Y, Luo Y, Mu S, Xu J, Song Q. Photoinduced Decarboxylative Phosphorothiolation of N-Hydroxyphthalimide Esters. Org Lett 2021; 23:6729-6734. [PMID: 34410131 DOI: 10.1021/acs.orglett.1c02300] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A visible-light-induced protocol for the synthesis of phosphorothioates is developed by employing the Ir-catalyzed decarboxylative phosphorothiolation of N-hydroxyphthalimide esters. This novel synthesis method utilizes carboxylic acids as raw material, which is stable, cheap, and commercially available. Scope studies show that this reaction has good compatibility of functional groups. Notably, both the synthesis of steric hindrance phosphorothioates and the later modification of some bioactive compounds are successfully achieved.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Ying Luo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Shiqiang Mu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
17
|
Liang Q, Lin L, Li G, Kong X, Xu B. Synthesis of Phenanthridine and Quinoxaline Derivatives
via
Copper‐Catalyzed
Radical Cyanoalkylation of Cyclobutanone Oxime Esters and Vinyl Azides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qi Liang
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| | - Long Lin
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| | - Guodong Li
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| | - Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology No. 666 Liaohe Road Changzhou Jiangsu 213032 China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| |
Collapse
|
18
|
Bosveli A, Montagnon T, Kalaitzakis D, Vassilikogiannakis G. Eosin: a versatile organic dye whose synthetic uses keep expanding. Org Biomol Chem 2021; 19:3303-3317. [PMID: 33899893 DOI: 10.1039/d1ob00301a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organic dyes, which absorb light in the visible region of the electromagnetic spectrum, offer a lower cost, greener alternative to precious metals in photocatalysis. In this context, the organic dye eosin's uses are currently expanding at a significant rate. For a long time, its action as an energy transfer agent dominated, more recently, however, there has been a growing interest in its potential as an electron transfer agent. In this short review, we highlight some recent (from 2016 onwards) contributions to the field with a focus on the breadth of the reactions eosin can catalyse.
Collapse
Affiliation(s)
- Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | | |
Collapse
|
19
|
Talukdar V, Vijayan A, Kumar Katari N, Radhakrishnan KV, Das P. Recent Trends in the Synthesis and Mechanistic Implications of Phenanthridines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Vishal Talukdar
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad 826004 India
| | - Ajesh Vijayan
- Department of Chemistry CHRIST (Deemed to be University) Hosur road Bengaluru 560029 India
| | | | - K. V. Radhakrishnan
- CSIR – National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695019 India
| | - Parthasarathi Das
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad 826004 India
| |
Collapse
|
20
|
Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. Single Electron Transfer-Induced Redox Processes Involving N-(Acyloxy)phthalimides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04756] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| |
Collapse
|
21
|
He S, Li H, Chen X, Krylov IB, Terent'ev AO, Qu L, Yu B. Advances of N-Hydroxyphthalimide Esters in Photocatalytic Alkylation Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Das S, Parida SK, Mandal T, Hota SK, Roy L, De Sarkar S, Murarka S. An organophotoredox-catalyzed redox-neutral cascade involving N-(acyloxy)phthalimides and maleimides. Org Chem Front 2021. [DOI: 10.1039/d1qo00170a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A mild and efficient organophotoredox-catalyzed redox-neutral cascade involving maleimides and N-(acyloxy)phthalimides allowing the synthesis of otherwise inaccessible Z-selective alkoxy-alkylidenesuccinimides is achieved.
Collapse
Affiliation(s)
- Sanju Das
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | | | - Tanumoy Mandal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | | | - Lisa Roy
- Institute of Chemical Technology Mumbai
- IOC Odisha Campus Bhubaneswar
- Bhubaneswar 751013
- India
| | - Suman De Sarkar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Sandip Murarka
- Department of Chemistry
- Indian Institute of Technology Jodhpur
- India
| |
Collapse
|
23
|
Organic Azides: Versatile Synthons in Transition Metal‐Catalyzed C(
sp
2
)−H Amination/Annulation for N‐Heterocycle Synthesis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Lin L, Liang Q, Kong X, Chen Q, Xu B. Electrochemical Tandem Fluoroalkylation-Cyclization of Vinyl Azides: Access to Trifluoroethylated and Difluoroethylated N-Heterocycles. J Org Chem 2020; 85:15708-15716. [PMID: 33226809 DOI: 10.1021/acs.joc.0c02213] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transition-metal- and oxidant-free electrochemical strategy for radical fluoroalkylation of vinyl azides was developed. The reaction was carried out under mild conditions by using inexpensive and bench-stable RfSO2Na (Rf = CF3, CF2H) as fluorination reagents. Depending on the starting material, both the electrochemical radical cyclization and dearomatization products could be obtained. This method provides a green and safe approach to synthesize fluorinated nitrogen heterocycles.
Collapse
Affiliation(s)
- Long Lin
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qi Liang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianqiang Kong
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
25
|
Roy Chowdhury S, Singh D, Hoque IU, Maity S. Organic Dye-Catalyzed Intermolecular Radical Coupling of α-Bromocarbonyls with Olefins: Photocatalytic Synthesis of 1,4-Ketocarbonyls Using Air as an Oxidant. J Org Chem 2020; 85:13939-13950. [DOI: 10.1021/acs.joc.0c01985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Deepak Singh
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| | - Injamam Ul Hoque
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| | - Soumitra Maity
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, JH 826004, India
| |
Collapse
|
26
|
Li G, Kong X, Liang Q, Lin L, Yu K, Xu B, Chen Q. Metal‐Free Electrochemical Coupling of Vinyl Azides: Synthesis of Phenanthridines and
β
‐Ketosulfones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guodong Li
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Xianqiang Kong
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
- School of Chemical Engineering and Materials Changzhou Institute of Technology No. 666 Liaohe Road 213032 Changzhou China
| | - Qi Liang
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Long Lin
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Ke Yu
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Bo Xu
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| |
Collapse
|
27
|
Qin P, Sun J, Wang F, Wang J, Wang H, Zhou M. Visible‐Light‐Induced C2 Alkylation of Heterocyclic N‐Oxides with N‐Hydroxyphthalimide Esters under Metal‐Free Conditions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pi‐Tao Qin
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Jing Sun
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Fei Wang
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Jing‐Yun Wang
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - He Wang
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| | - Ming‐Dong Zhou
- School of Chemistry and Materials Science Liaoning Shihua University Fushun 113001 People's Republic of China
| |
Collapse
|
28
|
Crespi S, Fagnoni M. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem Rev 2020; 120:9790-9833. [PMID: 32786419 PMCID: PMC8009483 DOI: 10.1021/acs.chemrev.0c00278] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Alkyl radicals are key intermediates in organic synthesis. Their classic generation from alkyl halides has a severe drawback due to the employment of toxic tin hydrides to the point that "flight from the tyranny of tin" in radical processes was considered for a long time an unavoidable issue. This review summarizes the main alternative approaches for the generation of unstabilized alkyl radicals, using photons as traceless promoters. The recent development in photochemical and photocatalyzed processes enabled the discovery of a plethora of new alkyl radical precursors, opening the world of radical chemistry to a broader community, thus allowing a new era of photon democracy.
Collapse
Affiliation(s)
- Stefano Crespi
- Stratingh
Institute for Chemistry, Center for Systems
Chemistry University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, V. Le Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
29
|
Niu P, Li J, Zhang Y, Huo C. One‐Electron Reduction of Redox‐Active Esters to Generate Carbon‐Centered Radicals. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000525] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pengfei Niu
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Jun Li
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Yongxin Zhang
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Congde Huo
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| |
Collapse
|
30
|
Vanadium(V) Complex-Catalyzed One-Pot Synthesis of Phenanthridines via a Pictet-Spengler-Dehydrogenative Aromatization Sequence. Catalysts 2020. [DOI: 10.3390/catal10080860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phenanthridine and its derivatives are important structural motifs that exist in natural products, biologically active compounds, and functional materials. Here, we report a mild, one-pot synthesis of 6-arylphenanthridine derivatives by a sequential cascade Pictet-Spengler-dehydrogenative aromatization reaction mediated by oxovanadium(V) complexes under aerobic conditions. The reaction of 2-(3,5-dimethoxyphenyl)aniline with a range of commercially available aryl aldehydes provided the desired phenanthridine derivatives in up to 96% yield. The ability of vanadium(V) complexes to function as efficient redox and Lewis acid catalysts enables the sequential reaction to occur under mild conditions.
Collapse
|
31
|
Paveliev SA, Churakov AI, Alimkhanova LS, Segida OO, Nikishin GI, Terent'ev AO. Electrochemical Synthesis of
O
‐Phthalimide Oximes from
α
‐Azido Styrenes
via
Radical Sequence: Generation, Addition and Recombination of Imide‐
N
‐Oxyl and Iminyl Radicals with C−O/N−O Bonds Formation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stanislav A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Artem I. Churakov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Liliya S. Alimkhanova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| |
Collapse
|
32
|
Shao M, Liang H, Liu Y, Qin W, Li Z. Photo‐Mediated Decarboxylative Cross Coupling of Quinoxalin‐2(1
H
)‐ones with Aliphatic Carboxylic Acids in Aqueous Solution: Synthesis of Alkylated Quinoxalin‐2(1
H
)‐ones and Preliminary Antifungal Evaluation Against
Magnaporthe Grisea. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Manyu Shao
- Department of Applied ChemistryCollege of Materials and EnergySouth China Agricultural University Guangzhou 510642 P. R. China
| | - Hanbin Liang
- Department of Applied ChemistryCollege of Materials and EnergySouth China Agricultural University Guangzhou 510642 P. R. China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 P. R. China Guangzhou,510642 (P. R. China
| | - Weiwei Qin
- Department of Applied ChemistryCollege of Materials and EnergySouth China Agricultural University Guangzhou 510642 P. R. China
| | - Zhaodong Li
- Department of Applied ChemistryCollege of Materials and EnergySouth China Agricultural University Guangzhou 510642 P. R. China
- Key Laboratory of Natural Pesticide & Chemical BiologyMinistry of EducationSouth China Agricultural University Guangzhou 510642 P. R. China
| |
Collapse
|
33
|
Mulina OM, Zhironkina NV, Paveliev SA, Demchuk DV, Terent’ev AO. Electrochemically Induced Synthesis of Sulfonylated N-Unsubstituted Enamines from Vinyl Azides and Sulfonyl Hydrazides. Org Lett 2020; 22:1818-1824. [DOI: 10.1021/acs.orglett.0c00139] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Nataliya V. Zhironkina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russian Federation
| | - Stanislav A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Dmitry V. Demchuk
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russian Federation
| |
Collapse
|
34
|
Das S, Parida SK, Mandal T, Sing L, De Sarkar S, Murarka S. Organophotoredox‐Catalyzed Cascade Radical Annulation of 2‐(Allyloxy)arylaldehydes with
N
‐(acyloxy)phthalimides: Towards Alkylated Chroman‐4‐one Derivatives. Chem Asian J 2020; 15:568-572. [PMID: 32017417 DOI: 10.1002/asia.201901735] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Sanju Das
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Sushanta Kumar Parida
- Department of ChemistryIndian Institute of Technology Jodhpur Karwar-342037 Rajasthan India
| | - Tanumoy Mandal
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Laxmikanta Sing
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Suman De Sarkar
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Sandip Murarka
- Department of ChemistryIndian Institute of Technology Jodhpur Karwar-342037 Rajasthan India
| |
Collapse
|
35
|
Chen J, Tang B, Liu X, Lv G, Shi Y, Huang T, Xing H, Guo X, Hai L, Wu Y. Ruthenium(ii)-catalyzed [5 + 1] annulation reaction: a facile and efficient approach to construct 6-ethenyl phenanthridines utilizing a primary amine as a directing group. Org Chem Front 2020. [DOI: 10.1039/d0qo00769b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A ruthenium(ii)-catalyzed [5 + 1] annulation reaction between 2-arylanilines and cyclopropenones employing a free amine as a directing group has been developed.
Collapse
|
36
|
Wang X, Han YF, Ouyang XH, Song RJ, Li JH. The photoredox alkylarylation of styrenes with alkyl N-hydroxyphthalimide esters and arenes involving C-H functionalization. Chem Commun (Camb) 2019; 55:14637-14640. [PMID: 31746852 DOI: 10.1039/c9cc07494e] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The In(OTf)3-promoted three-component photoredox alkylarylation of styrenes with alkyl NHP esters and arenes to access alkylated arene derivatives through C-C bond cleavage and C-H functionalization is reported. By utilizing visible-light photoredox catalysis, alkyl N-hydroxyphthalimide esters serving as alkyl carbon-centered radicals and a wide range of arenes (e.g., indoles, pyrrole, and electron-rich arenes) as nucleophiles were used to enable the introduction of various alkyl groups and aryl groups across the C[double bond, length as m-dash]C bonds with excellent selectivity and functional group tolerance.
Collapse
Affiliation(s)
- Xia Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ya-Fei Han
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
37
|
Guo JY, Zhang ZY, Guan T, Mao LW, Ban Q, Zhao K, Loh TP. Photoredox-catalyzed stereoselective alkylation of enamides with N-hydroxyphthalimide esters via decarboxylative cross-coupling reactions. Chem Sci 2019; 10:8792-8798. [PMID: 31803451 PMCID: PMC6849636 DOI: 10.1039/c9sc03070k] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/04/2019] [Indexed: 01/01/2023] Open
Abstract
Stereoselective β-C(sp2)-H alkylation of enamides with redox-active N-hydroxyphthalimide esters via a photoredox-catalyzed decarboxylative cross-coupling reaction is demonstrated. This methodology features operational simplicity, broad substrate scopes, and excellent stereoselectivities and functional group tolerance, affording a diverse array of geometrically defined and synthetically valuable enamides bearing primary, secondary or tertiary alkyl groups in satisfactory yields.
Collapse
Affiliation(s)
- Jing-Yu Guo
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Ze-Yu Zhang
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Ting Guan
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Lei-Wen Mao
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Qian Ban
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Kai Zhao
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Teck-Peng Loh
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore .
| |
Collapse
|
38
|
Yan Z, Sun B, Zhang X, Zhuang X, Yang J, Su W, Jin C. Construction of C(sp 2 )-C(sp 3 ) Bond between Quinoxalin-2(1H)-ones and N-Hydroxyphthalimide Esters via Photocatalytic Decarboxylative Coupling. Chem Asian J 2019; 14:3344-3349. [PMID: 31432590 DOI: 10.1002/asia.201900904] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/14/2019] [Indexed: 12/12/2022]
Abstract
A novel visible-light-driven decarboxylative coupling of alkyl N-hydroxyphthalimide esters (NHP esters) with quinoxalin-2(1H)-ones has been developed. This C(sp2 )-C(sp3 ) bond-forming transformation exhibits excellent substrate generality with respect to both the coupling partners. Of note, a series of 3-primary alkyl-substituted quinoxalin-2(1H)-ones that were difficult to synthesize by previous methods could be obtained in moderate to excellent yields. Additionally, the mild conditions, easy availability of substrates, wide functional group tolerance and operational simplicity make this protocol practical in the synthesis of 3-alkylated quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Zhiyang Yan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xun Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaohui Zhuang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Can Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
39
|
Shields DJ, Sarkar SK, Sriyarathne HDM, Brown JR, Wentrup C, Abe M, Gudmundsdottir AD. Transforming Triplet Vinylnitrene into Triplet Alkylnitrene at Cryogenic Temperatures. Org Lett 2019; 21:7194-7198. [DOI: 10.1021/acs.orglett.9b01950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dylan J. Shields
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45220-0172, United States
| | - Sujan K. Sarkar
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45220-0172, United States
| | | | - Jocelyn R. Brown
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45220-0172, United States
| | - Curt Wentrup
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Anna D. Gudmundsdottir
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45220-0172, United States
| |
Collapse
|
40
|
Lyu XL, Huang SS, Song HJ, Liu YX, Wang QM. Visible-Light-Induced Copper-Catalyzed Decarboxylative Coupling of Redox-Active Esters with N-Heteroarenes. Org Lett 2019; 21:5728-5732. [DOI: 10.1021/acs.orglett.9b02105] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xue-Li Lyu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Shi-Sheng Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Hong-Jian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yu-Xiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Qing-Min Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| |
Collapse
|
41
|
Tang YQ, Yang JC, Wang L, Fan M, Guo LN. Ni-Catalyzed Redox-Neutral Ring-Opening/Radical Addition/Ring-Closing Cascade of Cycloketone Oxime Esters and Vinyl Azides. Org Lett 2019; 21:5178-5182. [DOI: 10.1021/acs.orglett.9b01773] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu-Qi Tang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jun-Cheng Yang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Le Wang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Mingjin Fan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Li-Na Guo
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
42
|
Pawlowski R, Stanek F, Stodulski M. Recent Advances on Metal-Free, Visible-Light- Induced Catalysis for Assembling Nitrogen- and Oxygen-Based Heterocyclic Scaffolds. Molecules 2019; 24:E1533. [PMID: 31003464 PMCID: PMC6515354 DOI: 10.3390/molecules24081533] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 01/24/2023] Open
Abstract
Heterocycles are important class of structures, which occupy a major space in the domain of natural and bioactive compounds. For this reason, development of new synthetic strategies for their controllable synthesis became of special interests. The development of novel photoredox systems with wide-range application in organic synthesis is particularly interesting. Organic dyes have been widely applied as photoredox catalysts in organic synthesis. Their low costs compared to the typical photocatalysts based on transition metals make them an excellent alternative. This review describes proceedings since 2015 in the area of application of metal-free, visible-light-mediated catalysis for assembling various heterocyclic scaffolds containing five- and six-membered rings bearing nitrogen and oxygen heteroatoms.
Collapse
Affiliation(s)
- Robert Pawlowski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Filip Stanek
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Maciej Stodulski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
43
|
Ji P, Zhang Y, Wei Y, Huang H, Hu W, Mariano PA, Wang W. Visible-Light-Mediated, Chemo- and Stereoselective Radical Process for the Synthesis of C-Glycoamino Acids. Org Lett 2019; 21:3086-3092. [DOI: 10.1021/acs.orglett.9b00724] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Yueteng Zhang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Yongyi Wei
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - He Huang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Wenbo Hu
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Patrick A. Mariano
- Chemedit Co., 4601 North Lamar Boulevard, Austin, Texas 78751, United States
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
44
|
Shen MH, Liang XC, Li C, Wu H, Qu HY, Wang FM, Xu HD. Rhodium promoted intramolecular [4 + 2] cycloaddition of 2-azidodiene with alkyne: A transition metal catalysis approach to challenging fused bicyclic vinyl azide. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Jin C, Yan Z, Sun B, Yang J. Visible-Light-Induced Regioselective Alkylation of Coumarins via Decarboxylative Coupling with N-Hydroxyphthalimide Esters. Org Lett 2019; 21:2064-2068. [DOI: 10.1021/acs.orglett.9b00327] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Can Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiyang Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
46
|
Dai GL, Lai SZ, Luo Z, Tang ZY. Selective Syntheses of Z-Alkenes via Photocatalyzed Decarboxylative Coupling of N-Hydroxyphthalimide Esters with Terminal Arylalkynes. Org Lett 2019; 21:2269-2272. [DOI: 10.1021/acs.orglett.9b00558] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Guo-Li Dai
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shu-Zhen Lai
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhuangzhu Luo
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Zhen-Yu Tang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
47
|
Liu Y, Wang QL, Chen Z, Zhou Q, Li H, Zhou CS, Xiong BQ, Zhang PL, Tang KW. Visible-Light-Catalyzed C–C Bond Difunctionalization of Methylenecyclopropanes with Sulfonyl Chlorides for the Synthesis of 3-Sulfonyl-1,2-dihydronaphthalenes. J Org Chem 2019; 84:2829-2839. [DOI: 10.1021/acs.joc.8b03261] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Qiao-Lin Wang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hua Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Cong-Shan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Pan-Liang Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
48
|
Jiao MJ, Liu D, Hu XQ, Xu PF. Photocatalytic decarboxylative [2 + 2 + 1] annulation of 1,6-enynes with N-hydroxyphthalimide esters for the synthesis of indene-containing polycyclic compounds. Org Chem Front 2019. [DOI: 10.1039/c9qo01166h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient photoredox-mediated [2 + 2 + 1] annulation of 1,6-enynes with N-hydroxyphthalimide esters was reported for the synthesis of spiro and non-spiro indene-containing polycyclic frameworks.
Collapse
Affiliation(s)
- Meng-Jie Jiao
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Dan Liu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
49
|
Wang X, Li H, Qiu G, Wu J. Substituted Hantzsch esters as radical reservoirs with the insertion of sulfur dioxide under photoredox catalysis. Chem Commun (Camb) 2019; 55:2062-2065. [DOI: 10.1039/c8cc10246e] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-component reaction between 4-substituted Hantzsch esters, DABCO·(SO2)2, and vinyl azides in the presence of photoredox catalysts under visible light irradiation is developed. A range of (Z)-2-(alkylsulfonyl)-1-arylethen-1-amines is obtained in moderate to good yields with good regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Chemistry
- Fudan University
- 2005 Songhu Road
- Shanghai 200438
- China
| | - Haozhe Li
- Department of Chemistry
- Fudan University
- 2005 Songhu Road
- Shanghai 200438
- China
| | - Guanyinsheng Qiu
- Department of Chemistry
- Fudan University
- 2005 Songhu Road
- Shanghai 200438
- China
| | - Jie Wu
- Department of Chemistry
- Fudan University
- 2005 Songhu Road
- Shanghai 200438
- China
| |
Collapse
|
50
|
Terent'ev AO, Mulina OM, Parshin VD, Kokorekin VA, Nikishin GI. Electrochemically induced oxidative S–O coupling: synthesis of sulfonates from sulfonyl hydrazides and N-hydroxyimides or N-hydroxybenzotriazoles. Org Biomol Chem 2019; 17:3482-3488. [DOI: 10.1039/c8ob03162b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A variety of sulfonates were synthesized from sulfonyl hydrazides and N-hydroxy compounds via electrochemically induced oxidative S–O bond formation.
Collapse
Affiliation(s)
- Alexander O. Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
- D.I. Mendeleev University of Chemical Technology of Russia
| | - Olga M. Mulina
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Vadim D. Parshin
- D.I. Mendeleev University of Chemical Technology of Russia
- Moscow
- Russian Federation
| | - Vladimir A. Kokorekin
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
- Sechenov First Moscow State Medical University
| | - Gennady I. Nikishin
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| |
Collapse
|