1
|
Li S, Tong WY, Zhou Q, Yu X, Shi JL, Li SS, Qu S, Wang J. Palladium-Catalyzed Oxidative Coupling of Dibenzosiloles with α-Diazo Esters: Formal Replacement of the Silyl Group with Carbenes. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Shichao Li
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wen-Yan Tong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Qi Zhou
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Xiang Yu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jiang-Ling Shi
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Shu-Sen Li
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Shuanglin Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Zhang Y. Intermolecular Difunctionalization of C, C-Palladacycles Obtained by Pd(0)-Catalyzed C-H Activation. Acc Chem Res 2022; 55:3507-3518. [PMID: 36378838 DOI: 10.1021/acs.accounts.2c00627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
C,C-Palladacycles are an important class of organometallic compounds in which palladium is σ-bonded to two carbon atoms. They have three notable features that make them attractive in organic synthesis and organometallic chemistry: (1) C,C-Palladacycles are reactive intermediates that can be accessed via Pd(0)-catalyzed C-H activation of organic halides. Compared to Pd(II)-catalyzed heteroatom-directed C-H activation, C-H activation catalyzed by Pd(0) has some distinct advantages. In this type of catalytic reaction, the halo groups of readily available organic halides act as traceless directing groups. Furthermore, this strategy avoids the use of stoichiometric external oxidants. (2) C,C-Palladacycles have differentiated reactivities from common open-chain Pd(II) species. In particular, C,C-palladacycles have high reactivity toward electrophiles including alkyl halides. This unique reactivity can be utilized to develop novel reactions. (3) C,C-Palladacycles have two C-Pd bonds, providing a unique platform for developing novel reactions.Although a number of reactions of C,C-palladacycles had been developed prior to our work, the scope was largely limited to intramolecular cyclization reactions. Although Catellani reactions are intermolecular reactions of C,C-palladacycles, only one of the C-Pd bonds is functionalized. Our laboratory has sought to develop intermolecular difunctionalization reactions of C,C-palladacycles that exploit their unique reactivity and open new possibilities in organic synthesis. Aiming to develop synthetically useful reactions, we primarily focus on ring-forming reactions. In this Account, we summarize our laboratory's efforts to exploit intermolecular difunctionalization reactions of C,C-palladacycles that are obtained through Pd(0)-catalyzed C-H activation. We have developed a wide array of new reactions that represent facile and efficient methods for the synthesis of cyclic organic compounds, including functional materials and drug molecules. A range of C,C-palladacycles have been studied, including C(aryl),C(aryl)-palladacycles from 2-halobiaryls, C(aryl),C(alkyl)-palladacycles from ortho-iodo-tert-butylbenzenes or ortho-iodoanisole derivatives, and those obtained by cascade reactions. C,C-Palladacycles have been found to react with a variety of oxidants to furnish Pd(IV) intermediates, such as alkyl halides, aryl halides, diazo compounds, and N,N-di-tert-butyldiaziridinone, ultimately affording various cyclic structures, including 5-10-membered rings, carbo- and azacycles, spirocycles, and fused rings. Furthermore, novel reactivity of C,C-palladacycles has been discovered. For example, we found that C,C-palladacycles have unusually high reactivity toward disilanes, which can be leveraged to disilylate a variety of C,C-palladacycles with very high efficiency. These results should provide inspiration to develop other C-Si bond-forming reactions in the future. We hope that this Account will stimulate further research into the rich chemistry of C,C-palladacycles, in particular reactions that find practical applications in the synthesis of bioactive and functional molecules and those that advance the state of the art in C-H functionalization.
Collapse
Affiliation(s)
- Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
3
|
Zhao YH, Chen JH, Liu M, Zhou YB, Wu H. Palladium‐Catalyzed Sequential C−H Activation/Amination of 2‐Iodobiphenyls with Benzoisoxazoles for Synthesis of Carbazoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Wu Y, Wu FW, Zhou K, Li Y, Chen L, Wang S, Xu ZY, Lou SJ, Xu DQ. Rapid access to 9-arylfluorene and spirobifluorene through Pd-catalysed C-H arylation/deaminative annulation. Chem Commun (Camb) 2022; 58:6280-6283. [PMID: 35507823 DOI: 10.1039/d2cc01355j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We describe here a facile synthesis of 9-arylfluorenes and spirobifluorenes from readily available 1,1-diarylmethylamines and iodoarenes through Pd-cataylsed C(sp2)-H arylation and a sequential deaminative annulation. The reaction features high efficiency and simplicity of operation, constituting an interesting shortcut to access fluorene compounds.
Collapse
Affiliation(s)
- Yu Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Feng-Wei Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Kun Zhou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yiming Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Lei Chen
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shuang Wang
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
5
|
Pankhade YA, Pandey R, Fatma S, Ahmad F, Anand RV. TfOH-Catalyzed Intramolecular Annulation of 2-(Aryl)-Phenyl-Substituted p-Quinone Methides under Continuous Flow: Total Syntheses of Selaginpulvilin I and Isoselagintamarlin A. J Org Chem 2022; 87:3363-3377. [PMID: 35107013 DOI: 10.1021/acs.joc.1c02980] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this article, we describe a convenient method to access 9-aryl fluorene derivatives through a TfOH-catalyzed intramolecular 1,6-conjugate arylation of 2-(aryl)-phenyl-substituted p-quinone methides (QMs) under continuous flow using the microreaction technique. This method was found to be very effective for most of the p-QMs, and the corresponding 9-aryl fluorene derivatives were obtained in moderate to excellent yields. Moreover, this protocol was further elaborated to the first total syntheses of selaginpulvilin I and isoselagintamarlin A.
Collapse
Affiliation(s)
- Yogesh A Pankhade
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Rajat Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Shaheen Fatma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Feroz Ahmad
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, Punjab 140306, India
| |
Collapse
|
6
|
Chen LP, Cheng SL, Fan XY, Zhu JF, Wang BQ, Feng C, Xiang SK. Palladium-catalyzed triple coupling of 2-iodoanisoles with aryl iodides to access 6H-dibenzopyrans. Org Chem Front 2022. [DOI: 10.1039/d2qo00738j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed triple coupling of 2-iodoanisoles with aryl iodides has been developed. 3-Methyl-2-pyridone was used as a ligand to accelerate the cross-coupling and suppress the homo-coupling of 2-iodoanisoles. A variety...
Collapse
|
7
|
Chen X, Lei S, Chen Y, Deng W, Deng G, Liang Y, Yang Y. Decarboxylative cyclization of o-chlorobenzoic acids with C, C-palladacycles formed by an aminopalladation/dealkylation strategy to access dibenzo[ a, c]carbazoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00490a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel decarboxylative cyclization of o-chlorobenzoic acids with C,C-palladacycles formed by an aminopalladation/dealkylation strategy for the assembly of dibenzo[a,c]carbazoles has been reported.
Collapse
Affiliation(s)
- Xiahong Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Sen Lei
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yan Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Wenbo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
8
|
Jiang G, Ye H, Shi L, Dai H, Wu XX. Palladium-Catalyzed Sequential Vinyl C-H Activation/Dual Decarboxylation: Regioselective Synthesis of Phenanthrenes and Cyclohepta[1,2,3-de]naphthalenes. Org Lett 2021; 23:9398-9402. [PMID: 34822247 DOI: 10.1021/acs.orglett.1c03517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The application of a C(vinyl), C(aryl)-palladacycle from vinyl-containing substrates is challenging due to the interference of a reactive double bond in palladium catalysis. This Letter describes a [4 + 2] or [4 + 3] cyclization based on a C(vinyl), C(aryl)-palladacycle by employing α-oxocarboxylic acids as the insertion units under a palladium/air system. The reaction proceeded through the key vinyl C-H activation and dual decarboxylation sequence, forming phenanthrenes and cyclohepta[1,2,3-de]naphthalenes regioselectively in good yields. The synthetic versatility of this protocol is highlighted by the gram-scale synthesis and synthesizing functional material molecule.
Collapse
Affiliation(s)
- Guomin Jiang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Hao Ye
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Lei Shi
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Hong Dai
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Xin-Xing Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
9
|
Li H, Huang W, Yang K, Ye F, Yin G, Xu Z, Xu L. Asymmetric Disilylation of Spirocyclic Palladacyclopentanes via Tandem Heck/C−H Activation of Aryl Iodides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Wei‐Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Ke‐Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Guan‐Wu Yin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Li‐Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| |
Collapse
|
10
|
Jha N, Khot NP, Kapur M. Transition-Metal-Catalyzed C-H Bond Functionalization of Arenes/Heteroarenes via Tandem C-H Activation and Subsequent Carbene Migratory Insertion Strategy. CHEM REC 2021; 21:4088-4122. [PMID: 34647679 DOI: 10.1002/tcr.202100193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
The past decade has witnessed tremendous developments in transition-metal-catalyzed C-H bond activation and subsequent carbene migratory insertion reactions, thus assisting in the construction of diverse arene/heteroarene scaffolds. Various transition-metal catalysts serve this purpose and provide efficient pathways for an easy access to substituted heterocycles. A brief introduction to metal-carbenes has been provided along with key mechanistic pathways underlying the coupling reactions. The purpose of this review is to provide a concise knowledge about diverse directing group-assisted coupling of varied arenes/heteroarenes and acceptor-acceptor/donor-acceptor diazo compounds. The review also highlights the synthesis of various carbocycles and fused heterocycles through diazo insertion pathways, via C-C, C-N and C-O bond forming reactions. The mechanism usually involves a C-H activation process, followed by diazo insertion leading to subsequent coupling.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Nandkishor Prakash Khot
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
11
|
Huang L, Chen LP, Du Y, Fang MY, Wang BQ, Feng C, Xiang SK. Bay-Region Annulative π-Extension of o-Iodobiphenyls with Aliphatic Anhydrides Catalyzed by Pd(OAc) 2. Org Lett 2021; 23:7535-7539. [PMID: 34553944 DOI: 10.1021/acs.orglett.1c02746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bay-region annulative π-extension of o-iodobiphenyls with aliphatic anhydrides was developed. Many o-iodobiphenyls and aliphatic anhydrides can react well under the optimized conditions. A lot of phenanthrol derivatives can be efficiently prepared by this approach. The control experiments support that dibenzopalladacyclopentadienes may be the reaction intermediates.
Collapse
Affiliation(s)
- Lin Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Li-Ping Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yu Du
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Mao-Ying Fang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Chun Feng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| |
Collapse
|
12
|
Wei XH, Bai CY, Wang AJ, Feng QL, Zhao LB, Zhang P, Li ZH, Su Q, Wang YB. Lewis Acid Enables Ketone Phosphorylation to Form a C-P Bond and a C-C Bond: Synthesis of 9-Phosphoryl Fluorene Derivatives. Org Lett 2021; 23:7100-7105. [PMID: 34436910 DOI: 10.1021/acs.orglett.1c02504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient method for the Lewis acid promotion of the synthesis 9-phosphoryl fluorenes has been reported. This method focuses on ketone phosphonylation to form a C-P bond and a C-C bond between diphenylmethanone and H-phosphinate esters, H-phosphites, and H-phosphine oxides via phospha-aldol elimination, in which a series of 9-phosphoryl fluorene derivatives were selectively obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Xiao-Hong Wei
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou 730030, P. R. China
| | - Chun-Yuan Bai
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou 730030, P. R. China
| | - Ai-Jun Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou 730030, P. R. China
| | - Qiao-Liang Feng
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou 730030, P. R. China
| | - Lian-Biao Zhao
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou 730030, P. R. China
| | - Ping Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou 730030, P. R. China
| | - Zhen-Hua Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou 730030, P. R. China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou 730030, P. R. China
| | - Yan-Bin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, No. 1, Northwest Xincun, Lanzhou 730030, P. R. China
| |
Collapse
|
13
|
Debnath S, Lu M, Liang L, Shi Y. A Tandem Nucleophilic Aminopalladation and Carbene Insertion Sequence for Indole Fused Polycycles. Org Lett 2021; 23:7118-7122. [PMID: 34491766 DOI: 10.1021/acs.orglett.1c02512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient tandem nucleophilic aminopalladation and carbene insertion sequence is described for the synthesis of indole fused polycycles. The reaction process provides a variety of substituted indeno[1,2-b]indoles in up to 99% yields.
Collapse
Affiliation(s)
- Sudarshan Debnath
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Mei Lu
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Lingli Liang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China.,Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
14
|
Shelke YG, Hande PE, Gharpure SJ. Recent advances in the synthesis of pyrrolo[1,2- a]indoles and their derivatives. Org Biomol Chem 2021; 19:7544-7574. [PMID: 34524330 DOI: 10.1039/d1ob01103k] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pyrrolo[1,2-a]indole unit is a privileged heterocycle found in numerous natural products and has been shown to exhibit diverse pharmacological properties. Thus, recent years have witnessed immense interest from the synthesis community on the synthesis of this scaffold. In light of the ever-increasing demand for pyrrolo[1,2-a]indoles in drug discovery, this review provides an overview of recent synthesis methods for the preparation of pyrrolo[1,2-a]indoles and their derivatives. The mechanistic pathway and stereo-electronic factors affecting the yield and selectivity of the product are briefly explained. Furthermore, we have attempted to demonstrate the utility of the developed methods in the synthesis of bioactive molecules and natural products, wherever offered.
Collapse
Affiliation(s)
- Yogesh G Shelke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Pankaj E Hande
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
15
|
Zhu BB, Ye WB, He ZT, Zhang SS, Feng CG, Lin GQ. Regioselective Tandem C–H Alkylation/Coupling Reaction of ortho-Iodophenylethylenes via C, C-Pallada(II)cycles. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bin-Bin Zhu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen-Bo Ye
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Tao He
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Shu-Sheng Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chen-Guo Feng
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Qiang Lin
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
16
|
Zhang M, Deng W, Sun M, Zhou L, Deng G, Liang Y, Yang Y. α-Bromoacrylic Acids as C1 Insertion Units for Palladium-Catalyzed Decarboxylative Synthesis of Diverse Dibenzofulvenes. Org Lett 2021; 23:5744-5749. [PMID: 34319122 DOI: 10.1021/acs.orglett.1c01888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein α-bromoacrylic acids have been employed as C1 insertion units to achieve the palladium-catalyzed [4 + 1] annulation of 2-iodobiphenyls, which provides an efficient platform for the construction of diverse dibenzofulvenes. This protocol enables the formation of double C(aryl)-C(vinyl) bonds via a C(vinyl)-Br bond cleavage and decarboxylation. It is particularly noteworthy that the method features a broad substrate scope, and various interesting frameworks, such as bridged ring, fused (hetero)aromatic ring, and divinylbenzene, can be successfully incorporated into the products.
Collapse
Affiliation(s)
- Minghao Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Wenbo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Mingjie Sun
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Liwei Zhou
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
17
|
Fang MY, Chen LP, Huang L, Fang DM, Chen XZ, Wang BQ, Feng C, Xiang SK. Synthesis of Tribenzo[ b, d, f]azepines via Palladium-Catalyzed Annulation Reaction of 2-Iodobiphenyls with 2-Halogenoanilines. J Org Chem 2021; 86:9096-9106. [PMID: 34128663 DOI: 10.1021/acs.joc.1c01082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed annulation reaction of 2-iodobiphenyls with 2-halogenoanilines has been developed. A variety of 2-iodobiphenyls and 2-halogenoanilines can undergo this transformation. Diversified tribenzo[b,d,f]azepine derivatives can be synthesized in moderate to excellent yields according to this method.
Collapse
Affiliation(s)
- Mao-Ying Fang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Li-Ping Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Lin Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Dong-Mei Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Xiao-Zhen Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Chun Feng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| |
Collapse
|
18
|
Yang X, Chen X, Xu Y, Zhang M, Deng G, Yang Y, Liang Y. Palladium-Catalyzed [4 + 3] or [2 + 2 + 3] Annulation via C–H Activation and Subsequent Decarboxylation: Access to Heptagon-Embedded Polycyclic Aromatic Hydrocarbons. Org Lett 2021; 23:2610-2615. [DOI: 10.1021/acs.orglett.1c00520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiumei Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiahong Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yankun Xu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Minghao Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
19
|
Xin L, Wan W, Yu Y, Wan Q, Ma L, Huang X. Construction of Protoberberine Alkaloid Core through Palladium Carbene Bridging C–H Bond Functionalization and Pyridine Dearomatization. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Luoting Xin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Wan Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Qiuling Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Liyao Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Yu Y, Ma L, Xia J, Xin L, Zhu L, Huang X. A Modular Approach to Dibenzo‐fused ϵ‐Lactams: Palladium‐Catalyzed Bridging‐C−H Activation. Angew Chem Int Ed Engl 2020; 59:18261-18266. [DOI: 10.1002/anie.202007799] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liyao Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiajin Xia
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Luoting Xin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
21
|
Yu Y, Ma L, Xia J, Xin L, Zhu L, Huang X. A Modular Approach to Dibenzo‐fused ϵ‐Lactams: Palladium‐Catalyzed Bridging‐C−H Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liyao Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiajin Xia
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Luoting Xin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
22
|
Zhang H, Yu Y, Huang X. Facile access to 2,2-diaryl 2H-chromenes through a palladium-catalyzed cascade reaction of ortho-vinyl bromobenzenes with N-tosylhydrazones. Org Biomol Chem 2020; 18:5115-5119. [PMID: 32596707 DOI: 10.1039/d0ob00978d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A palladium-catalyzed cascade reaction of ortho-vinyl bromobenzenes with N-tosylhydrazones has been developed, which provides a facile approach to 2,2-disubstituted 2H-chromenes. The migration of palladium from the aryl to vinyl position is crucial, as the in situ produced vinyl palladium intermediate could further react with diazo compounds to generate the reactive species for the sequential annulation.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
23
|
Nishida M, Lee D, Shintani R. Intermolecular Three-Component Synthesis of Fluorene Derivatives by a Rhodium-Catalyzed Stitching Reaction/Remote Nucleophilic Substitution Sequence. J Org Chem 2020; 85:8489-8500. [PMID: 32506910 DOI: 10.1021/acs.joc.0c00790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A three-component synthesis of multisubstituted fluorene derivatives has been developed by devising a rhodium-catalyzed stitching reaction/remote nucleophilic substitution sequence. A variety of nucleophiles can be installed in the second step including both heteroatom and carbon nucleophiles. An efficient synthesis of 5H-benzo[a]fluoren-5-ones has also been realized using N-(2-alkynyl)benzoylpyrrole as the reaction partner through a new reaction pathway.
Collapse
Affiliation(s)
- Masaki Nishida
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Donghyeon Lee
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
24
|
Ji X, Gu Y, Cheng C, Wu Z, Zhang Y. Palladium‐Catalyzed Three‐Component Reactions for the Synthesis of Norbornane‐Fused Indanes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaoming Ji
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Yichao Gu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Cang Cheng
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Zhuo Wu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University 1239 Siping Road Shanghai 200092 People's Republic of China
| |
Collapse
|
25
|
Yuan Y, Guo X, Zhang X, Li B, Huang Q. Access to 5H-benzo[a]carbazol-6-ols and benzo[6,7]cyclohepta[1,2-b]indol-6-ols via rhodium-catalyzed C–H activation/carbenoid insertion/aldol-type cyclization. Org Chem Front 2020. [DOI: 10.1039/d0qo00820f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rhodium-catalyzed mono-ortho C–H activation/carbenoid insertion/aldol-type cyclization of 3-aldehyde-2-phenyl-1H-indoles with diazo compounds has been developed.
Collapse
Affiliation(s)
- Yumeng Yuan
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiemin Guo
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Buhong Li
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine
- Fujian Key Laboratory for Photonics Technology
- Fujian Normal University
- Fuzhou
- P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| |
Collapse
|
26
|
Athira M, Meerakrishna RS, Shanmugam P. Synthesis of blue emissive functionalized 9,9-disubstituted fluorene derivatives via BF 3·OEt 2 mediated reaction of co-planar 9-(phenylethynyl)-9 H-fluoren-9-ols with isatin imines. NEW J CHEM 2020. [DOI: 10.1039/c9nj05102c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A BF3·Et2O mediated reaction of co-planar 9-(phenylethynyl)-9H-fluoren-9-ol with various isatin imines afforded title compounds in excellent yield. The products showed luminescence in the blue region with large Stokes shift.
Collapse
Affiliation(s)
- Mohanakumaran Athira
- Organic and Bio-Organic Chemistry Division
- CSIR-Central Leather Research Institute (CLRI)
- Chennai-600020
- India
| | | | - Ponnusamy Shanmugam
- Organic and Bio-Organic Chemistry Division
- CSIR-Central Leather Research Institute (CLRI)
- Chennai-600020
- India
| |
Collapse
|
27
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Zhou Y, Lin L, Wang Y, Zhu J, Song Q. Cu-Catalyzed Aromatic Metamorphosis of 3-Aminoindazoles. Org Lett 2019; 21:7630-7634. [PMID: 31503499 DOI: 10.1021/acs.orglett.9b02933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present a novel Cu-catalyzed aromatic metamorphosis of 3-aminoindazoles via oxidative cleavage of two C-N bonds of 3-aminoindazoles. This unprecedented reactivity of 3-aminoindazoles allows one to forge diverse nitrile-containing triphenylenes in decent yields via generation of the cyano group in situ. The current study reveals that 3-aminoindazoles could be harnessed as radical precursors via oxidative denitrogenation, the reaction mechanism of which was supported by density functional theory calculations.
Collapse
Affiliation(s)
- Yao Zhou
- Institute of Next Generation Matter Transformation , College of Materials Science & Engineering at Huaqiao University , 668 Jimei Blvd. , Xiamen , Fujian 361021 , People's Republic of China
| | - Lu Lin
- College of Chemistry and Chemical Engineering at Xiamen University , Xiamen , Fujian 361005 , People's Republic of China
| | - Ya Wang
- Institute of Next Generation Matter Transformation , College of Materials Science & Engineering at Huaqiao University , 668 Jimei Blvd. , Xiamen , Fujian 361021 , People's Republic of China
| | - Jun Zhu
- College of Chemistry and Chemical Engineering at Xiamen University , Xiamen , Fujian 361005 , People's Republic of China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation , College of Materials Science & Engineering at Huaqiao University , 668 Jimei Blvd. , Xiamen , Fujian 361021 , People's Republic of China.,Key Laboratory of Molecule Synthesis and Function Discovery , College of Chemistry at Fuzhou University , Fuzhou , Fujian 350108 , People's Republic of China
| |
Collapse
|
29
|
Nishida M, Shintani R. Convergent Synthesis of Fluorene Derivatives by a Rhodium‐Catalyzed Stitching Reaction/Alkene Isomerization Sequence. Chemistry 2019; 25:7475-7479. [DOI: 10.1002/chem.201901519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Masaki Nishida
- Division of ChemistryDepartment of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| | - Ryo Shintani
- Division of ChemistryDepartment of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
30
|
Kaiser RP, Caivano I, Kotora M. Transition-metal-catalyzed methods for synthesis of fluorenes. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Ma D, Ji X, Wu Z, Cheng C, Zhou B, Zhang Y. Synthesis of Benzimidazoles through Palladium-Catalyzed Amination of 2-Iodobenzimines with Diaziridinone. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ding Ma
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Xiaoming Ji
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Zhuo Wu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Cang Cheng
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Bo Zhou
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 People's Republic of China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 People's Republic of China
| |
Collapse
|
32
|
Ma X, Lu A, Ji X, Shi G, Zhang Y. Disilylation of Palladacycles that were Generated through the C−H Activation of Aryl Halides. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaotian Ma
- School of Chemical Science and Engineering; Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 P. R. China
| | - Ailan Lu
- School of Chemical Science and Engineering; Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 P. R. China
| | - Xiaoming Ji
- School of Chemical Science and Engineering; Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 P. R. China
| | - Guangfa Shi
- School of Chemical Science and Engineering; Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 P. R. China
| | - Yanghui Zhang
- School of Chemical Science and Engineering; Shanghai Key Laboratory of Chemical Assessment and Sustainability; Tongji University; 1239 Siping Road Shanghai 200092 P. R. China
| |
Collapse
|
33
|
Lo CH, Lee HM. Synthesis and Characterization of C,C-Type Palladacycles and Their Catalytic Application in Mizoroki–Heck Coupling Reaction. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chi Hou Lo
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Hon Man Lee
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| |
Collapse
|