1
|
Bergame CP, Dong C, Bandi S, Schlemper-Scheidt MD, Sutour S, von Reuß SH. Identification and synthesis of 4'- ortho-aminobenzoyl ascarosides as sex pheromones of gonochoristic Caenorhabditis nigoni. Org Biomol Chem 2025; 23:3654-3670. [PMID: 40126449 DOI: 10.1039/d5ob00271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Using a combination of RP-C18 chromatography, MS and NMR techniques, a new class of homologous modular ascarosides carrying a 4'-ortho-aminobenzoyl moiety was identified from Caenorhabditis nigoni and Caenorhabditis tropicalis. These compounds could not be detected using targeted ascaroside screens based on precursor ion screening for m/z 73.0294 [C3H5O2]-, which highlighted a limitation of the current protocols. Their structure assignment was established by total synthesis of AB-asc-C5 (SMID: abas#9) as a representative example in about 1% yield over 14 steps. To achieve this aim, a new method for the synthesis of orthogonally protected ascarosides has been developed which provides methyl 2-benzoyl-ascaroside as a highly versatile building block for regioselective ascaroside synthesis. Furthermore, a new synthesis for short chain C5 ascarosides was developed that employs selective reduction and Grubbs cross metathesis. The identity of synthetic AB-asc-C5 and the natural product isolated from C. nigoni was established by an NMR mixing experiment. Retention of C. nigoni males by the exclusively female produced AB-asc-C5 suggests a function as a sex pheromone component. Along with the indole ascarosides (icas), the new class of 4'-ortho-aminobenzoyl ascarosides (abas) represents a mechanism to translate bacterial food dependent L-tryptophan availability into species-specific signaling molecules.
Collapse
Affiliation(s)
- Célia P Bergame
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Chuanfu Dong
- Max Planck Institute for Chemical Ecology (MPICE), Department of Bioorganic Chemistry, Hans-Knoell Strasse 8, D-07745 Jena, Germany
| | - Siva Bandi
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Marie-Désirée Schlemper-Scheidt
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Sylvain Sutour
- Neuchatel Platform of Analytical Chemistry (NPAC), University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - Stephan H von Reuß
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
- Max Planck Institute for Chemical Ecology (MPICE), Department of Bioorganic Chemistry, Hans-Knoell Strasse 8, D-07745 Jena, Germany
- Neuchatel Platform of Analytical Chemistry (NPAC), University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| |
Collapse
|
2
|
Godoy P, Rezanezhad Dizaji B, Zardini Buzatto A, Sanchez L, Li L. The Lipid Composition of the Exo-Metabolome from Haemonchus contortus. Metabolites 2025; 15:193. [PMID: 40137157 PMCID: PMC11944095 DOI: 10.3390/metabo15030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objectives: Metabolomic studies of different parasite-derived biomolecules, such as lipids, are needed to broaden the discovery of novel targets and overcome anthelmintic resistance. Lipids are involved in diverse functions in biological systems, including parasitic helminths, but little is known about their role in the biology of these organisms and their impact on host-parasite interactions. This study aimed to characterize the lipid profile secreted by Haemonchus contortus, the major parasitic nematodes of farm ruminants. Methods: H. contortus adult worms were recovered from infected sheep and cultured ex vivo. Parasite medium was collected at different time points and samples were subjected to an untargeted global lipidomic analysis. Lipids were extracted and subjected to Liquid Chromatography-Mass Spectrometry (LC-MS/MS). Annotated lipids were normalized and subjected to statistical analysis. Lipid clusters' fold change (FC) and individual lipid features were compared at different time points. Lipids were also analyzed by structural composition and saturation bonding. Results: A total of 1057 H. contortus lipid features were annotated, including glycerophospholipids, fatty acyls, sphingolipids, glycerolipids, and sterols. Most of these compounds were unsaturated lipids. We found significant FC differences in the lipid profile in a time-dependent manner. Conclusions: We predict that many lipids found in our study act as signaling molecules for nematodes' physiological functions, such as adaptation to nutrient changes, life span and mating, and as modulators on the host immune responses.
Collapse
Affiliation(s)
- Pablo Godoy
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (B.R.D.); (L.S.)
- Independent Researcher and Animal Health Consultant, Montreal, QC H4A 2V2, Canada
| | - Behrouz Rezanezhad Dizaji
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (B.R.D.); (L.S.)
| | | | - Laura Sanchez
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (B.R.D.); (L.S.)
| | - Liang Li
- The Metabolomics Innovation Centre (TMIC), Edmonton, AB T6G 2E9, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
| |
Collapse
|
3
|
Bhar S, Yoon CS, Mai K, Han J, Prajapati DV, Wang Y, Steffen CL, Bailey LS, Basso KB, Butcher RA. An acyl-CoA thioesterase is essential for the biosynthesis of a key dauer pheromone in C. elegans. Cell Chem Biol 2024; 31:1011-1022.e6. [PMID: 38183989 PMCID: PMC11102344 DOI: 10.1016/j.chembiol.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/02/2023] [Accepted: 12/10/2023] [Indexed: 01/08/2024]
Abstract
Methyl ketone (MK)-ascarosides represent essential components of several pheromones in Caenorhabditis elegans, including the dauer pheromone, which triggers the stress-resistant dauer larval stage, and the male-attracting sex pheromone. Here, we identify an acyl-CoA thioesterase, ACOT-15, that is required for the biosynthesis of MK-ascarosides. We propose a model in which ACOT-15 hydrolyzes the β-keto acyl-CoA side chain of an ascaroside intermediate during β-oxidation, leading to decarboxylation and formation of the MK. Using comparative metabolomics, we identify additional ACOT-15-dependent metabolites, including an unusual piperidyl-modified ascaroside, reminiscent of the alkaloid pelletierine. The β-keto acid generated by ACOT-15 likely couples to 1-piperideine to produce the piperidyl ascaroside, which is much less dauer-inducing than the dauer pheromone, asc-C6-MK (ascr#2, 1). The bacterial food provided influences production of the piperidyl ascaroside by the worm. Our work shows how the biosynthesis of MK- and piperidyl ascarosides intersect and how bacterial food may impact chemical signaling in the worm.
Collapse
Affiliation(s)
- Subhradeep Bhar
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Chi-Su Yoon
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kevin Mai
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Jungsoo Han
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Dilip V Prajapati
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Yuting Wang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Candy L Steffen
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
4
|
Reilly DK, Schwarz EM, Muirhead CS, Robidoux AN, Narayan A, Doma MK, Sternberg PW, Srinivasan J. Transcriptomic profiling of sex-specific olfactory neurons reveals subset-specific receptor expression in Caenorhabditis elegans. Genetics 2023; 223:iyad026. [PMID: 36801937 PMCID: PMC10319972 DOI: 10.1093/genetics/iyad026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/20/2023] Open
Abstract
The nematode Caenorhabditis elegans utilizes chemosensation to navigate an ever-changing environment for its survival. A class of secreted small-molecule pheromones, termed ascarosides, play an important role in olfactory perception by affecting biological functions ranging from development to behavior. The ascaroside #8 (ascr#8) mediates sex-specific behaviors, driving avoidance in hermaphrodites and attraction in males. Males sense ascr#8 via the ciliated male-specific cephalic sensory (CEM) neurons, which exhibit radial symmetry along dorsal-ventral and left-right axes. Calcium imaging studies suggest a complex neural coding mechanism that translates stochastic physiological responses in these neurons to reliable behavioral outputs. To test the hypothesis that neurophysiological complexity arises from differential expression of genes, we performed cell-specific transcriptomic profiling; this revealed between 18 and 62 genes with at least twofold higher expression in a specific CEM neuron subtype vs both other CEM neurons and adult males. These included two G protein-coupled receptor (GPCR) genes, srw-97 and dmsr-12, that were specifically expressed in nonoverlapping subsets of CEM neurons and whose expression was confirmed by GFP reporter analysis. Single CRISPR-Cas9 knockouts of either srw-97 or dmsr-12 resulted in partial defects, while a double knockout of both srw-97 and dmsr-12 completely abolished the attractive response to ascr#8. Together, our results suggest that the evolutionarily distinct GPCRs SRW-97 and DMSR-12 act nonredundantly in discrete olfactory neurons to facilitate male-specific sensation of ascr#8.
Collapse
Affiliation(s)
- Douglas K Reilly
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Caroline S Muirhead
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Annalise N Robidoux
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Anusha Narayan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Meenakshi K Doma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Borges RM, Gouveia GJ, das Chagas FO. Advances in Microbial NMR Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:123-147. [PMID: 37843808 DOI: 10.1007/978-3-031-41741-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Confidently, nuclear magnetic resonance (NMR) is the most informative technique in analytical chemistry and its use as an analytical platform in metabolomics is well proven. This chapter aims to present NMR as a viable tool for microbial metabolomics discussing its fundamental aspects and applications in metabolomics using some chosen examples.
Collapse
Affiliation(s)
- Ricardo Moreira Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gonçalo Jorge Gouveia
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Fernanda Oliveira das Chagas
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Osborne N, Leahy C, Lee YK, Rote P, Song BJ, Hardwick JP. CYP4V2 fatty acid omega hydroxylase, a druggable target for the treatment of metabolic associated fatty liver disease (MAFLD). Biochem Pharmacol 2021; 195:114841. [PMID: 34798124 DOI: 10.1016/j.bcp.2021.114841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/30/2022]
Abstract
Fatty acids are essential in maintaining cellular homeostasis by providing lipids for energy production, cell membrane integrity, protein modification, and the structural demands of proliferating cells. Fatty acids and their derivatives are critical bioactive signaling molecules that influence many cellular processes, including metabolism, cell survival, proliferation, migration, angiogenesis, and cell barrier function. The CYP4 Omega hydroxylase gene family hydroxylate various short, medium, long, and very-long-chain saturated, unsaturated and polyunsaturated fatty acids. Selective members of the CYP4 family metabolize vitamins and biochemicals with long alkyl side chains and bioactive prostaglandins, leukotrienes, and arachidonic acids. It is uncertain of the physiological role of different members of the CYP4 omega hydroxylase gene family in the metabolic control of physiological and pathological processes in the liver. CYP4V2 is a unique member of the CYP4 family. CYP4V2 inactivation in retinal pigment epithelial cells leads to cholesterol accumulation and Bietti's Crystalline Dystrophy (BCD) pathogenesis. This commentary provides information on the role CYP4V2 has in metabolic syndrome and nonalcoholic fatty liver disease progression. This is accomplished by identifying its role in BCD, its control of cholesterol synthesis and lipid droplet formation in C. elegans, and the putative function in cardiovascular disease and gastrointestinal/hepatic pathologies.
Collapse
Affiliation(s)
- Nicholas Osborne
- Northeast Ohio Medical Universities, Department of Integrative Medical Sciences, Rootstown, OH 44272, United States
| | - Charles Leahy
- Northeast Ohio Medical Universities, Department of Integrative Medical Sciences, Rootstown, OH 44272, United States
| | - Yoon-Kwang Lee
- Northeast Ohio Medical Universities, Department of Integrative Medical Sciences, Rootstown, OH 44272, United States
| | - Paula Rote
- Internal Medicine University of Minnesota Health Care System, Minneapolis, MN 55455, United States
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, 5625 Fishers Lane Room 3N-01, MSC 9410, Bethesda, MD 20892, United States
| | - James P Hardwick
- Northeast Ohio Medical Universities, Department of Integrative Medical Sciences, Rootstown, OH 44272, United States
| |
Collapse
|
7
|
Dong C, Dolke F, Bandi S, Paetz C, von Reuß SH. Dimerization of conserved ascaroside building blocks generates species-specific male attractants in Caenorhabditis nematodes. Org Biomol Chem 2021; 18:5253-5263. [PMID: 32614033 DOI: 10.1039/d0ob00799d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Comparative ascaroside profiling of Caenorhabditis nematodes using HPLC-ESI-(-)-MS/MS precursor ion scanning revealed a class of highly species-specific ascaroside dimers. Their 2- and 4-isomeric, homo- and heterodimeric structures were identified using a combination of HPLC-ESI-(+)-HR-MS/MS spectrometry and high-resolution dqf-COSY NMR spectroscopy. Structure assignments were confirmed by total synthesis of representative examples. Functional characterization using holding assays indicated that males of Caenorhabditis remanei and Caenorhabditis nigoni are exclusively retained by their conspecific ascaroside dimers, demonstrating that dimerization of conserved monomeric building blocks represents a yet undescribed mechanism that generates species-specific signaling molecules in the Caenorhabditis genus.
Collapse
Affiliation(s)
- Chuanfu Dong
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Franziska Dolke
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Siva Bandi
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland.
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Stephan H von Reuß
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany and Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland.
| |
Collapse
|
8
|
Ikeuchi K, Murasawa K, Arai T, Yamada H. p-Methylbenzyl 2,2,2-Trichloroacetimidate: Simple Preparation and Application to Alcohol Protection. CHEM LETT 2020. [DOI: 10.1246/cl.200303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazutada Ikeuchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kentaro Murasawa
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Tomoki Arai
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hidetsohi Yamada
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
9
|
Dong C, Weadick CJ, Truffault V, Sommer RJ. Convergent evolution of small molecule pheromones in Pristionchus nematodes. eLife 2020; 9:55687. [PMID: 32338597 PMCID: PMC7224695 DOI: 10.7554/elife.55687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023] Open
Abstract
The small molecules that mediate chemical communication between nematodes-so-called 'nematode-derived-modular-metabolites' (NDMMs)-are of major interest because of their ability to regulate development, behavior, and life-history. Pristionchus pacificus nematodes produce an impressive diversity of structurally complex NDMMs, some of which act as primer pheromones that are capable of triggering irreversible developmental switches. Many of these NDMMs have only ever been found in P. pacificus but no attempts have been made to study their evolution by profiling closely related species. This study brings a comparative perspective to the biochemical study of NDMMs through the systematic MS/MS- and NMR-based analysis of exo-metabolomes from over 30 Pristionchus species. We identified 36 novel compounds and found evidence for the convergent evolution of complex NDMMs in separate branches of the Pristionchus phylogeny. Our results demonstrate that biochemical innovation is a recurrent process in Pristionchus nematodes, a pattern that is probably typical across the animal kingdom.
Collapse
Affiliation(s)
- Chuanfu Dong
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cameron J Weadick
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | | | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
10
|
Zhang YK, Reilly DK, Yu J, Srinivasan J, Schroeder FC. Photoaffinity probes for nematode pheromone receptor identification. Org Biomol Chem 2019; 18:36-40. [PMID: 31781713 PMCID: PMC6961461 DOI: 10.1039/c9ob02099c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identification of pheromone receptors plays a central role for uncovering signaling pathways that underlie chemical communication in animals. Here, we describe the synthesis and bioactivity of photoaffinity probes for the ascaroside ascr#8, a sex-pheromone of the model nematode, Caenorhabditis elegans. Structure-activity studies guided incorporation of alkyne- and diazirine-moieties and revealed that addition of functionality in the sidechain of ascr#8 was well tolerated, whereas modifications to the ascarylose moiety resulted in loss of biological activity. Our study will guide future probe design and provides a basis for pheromone receptor identification via photoaffinity labeling in C. elegans.
Collapse
Affiliation(s)
- Ying K Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| | | | | | | | | |
Collapse
|
11
|
Bergame CP, Dong C, Sutour S, von Reuß SH. Epimerization of an Ascaroside-Type Glycolipid Downstream of the Canonical β-Oxidation Cycle in the Nematode Caenorhabditis nigoni. Org Lett 2019; 21:9889-9892. [PMID: 31809061 DOI: 10.1021/acs.orglett.9b03808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A species-specific ascaroside-type glycolipid was identified in the nematode Caenorhabditis nigoni using HPLC-ESI-(-)-MS/MS precursor ion scanning, HR-MS/MS, and NMR techniques. Its structure containing an l-3,6-dideoxy-lyxo-hexose unit was established by total synthesis. The identification of this novel 4-epi-ascaroside (caenorhabdoside) in C. nigoni along with the previous identification of 2-epi-ascarosides (paratosides) in Pristionchus pacificus indicate that nematodes can generate highly specific signaling molecules by epimerization of the ascarylose building block downstream of the canonical β-oxidation cycle.
Collapse
Affiliation(s)
- Célia P Bergame
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| | - Chuanfu Dong
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany
| | - Sylvain Sutour
- Neuchâtel Platform for Analytical Chemistry (NPAC) , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| | - Stephan H von Reuß
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland.,Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany.,Neuchâtel Platform for Analytical Chemistry (NPAC) , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| |
Collapse
|
12
|
Ascaroside Pheromones: Chemical Biology and Pleiotropic Neuronal Functions. Int J Mol Sci 2019; 20:ijms20163898. [PMID: 31405082 PMCID: PMC6719183 DOI: 10.3390/ijms20163898] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Pheromones are neuronal signals that stimulate conspecific individuals to react to environmental stressors or stimuli. Research on the ascaroside (ascr) pheromones in Caenorhabditis elegans and other nematodes has made great progress since ascr#1 was first isolated and biochemically defined in 2005. In this review, we highlight the current research on the structural diversity, biosynthesis, and pleiotropic neuronal functions of ascr pheromones and their implications in animal physiology. Experimental evidence suggests that ascr biosynthesis starts with conjugation of ascarylose to very long-chain fatty acids that are then processed via peroxisomal β-oxidation to yield diverse ascr pheromones. We also discuss the concentration and stage-dependent pleiotropic neuronal functions of ascr pheromones. These functions include dauer induction, lifespan extension, repulsion, aggregation, mating, foraging and detoxification, among others. These roles are carried out in coordination with three G protein-coupled receptors that function as putative pheromone receptors: SRBC-64/66, SRG-36/37, and DAF-37/38. Pheromone sensing is transmitted in sensory neurons via DAF-16-regulated glutamatergic neurotransmitters. Neuronal peroxisomal fatty acid β-oxidation has important cell-autonomous functions in the regulation of neuroendocrine signaling, including neuroprotection. In the future, translation of our knowledge of nematode ascr pheromones to higher animals might be beneficial, as ascr#1 has some anti-inflammatory effects in mice. To this end, we propose the establishment of pheromics (pheromone omics) as a new subset of integrated disciplinary research area within chemical ecology for system-wide investigation of animal pheromones.
Collapse
|
13
|
Dolke F, Dong C, Bandi S, Paetz C, Glauser G, von Reuß SH. Ascaroside Signaling in the Bacterivorous Nematode Caenorhabditis remanei Encodes the Growth Phase of Its Bacterial Food Source. Org Lett 2019; 21:5832-5837. [PMID: 31305087 DOI: 10.1021/acs.orglett.9b01914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel class of species-specific modular ascarosides that integrate additional fatty acid building blocks was characterized in the nematode Caenorhabditis remanei using a combination of HPLC-ESI-(-)-MS/MS precursor ion scanning, microreactions, HR-MS/MS, MSn, and NMR techniques. The structure of the dominating component carrying a cyclopropyl fatty acid moiety was established by total synthesis. Biogenesis of this female-produced male attractant depends on cyclopropyl fatty acid synthase (cfa), which is expressed in bacteria upon entering their stationary phase.
Collapse
Affiliation(s)
- Franziska Dolke
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany
| | - Chuanfu Dong
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany
| | - Siva Bandi
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| | - Christian Paetz
- Research Group Biosynthesis/NMR , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany
| | - Gaétan Glauser
- Neuchâtel Platform for Analytical Chemistry (NPAC) , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| | - Stephan H von Reuß
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knöll Straße 8 , D-07745 Jena , Germany.,Laboratory for Bioanalytical Chemistry, Institute of Chemistry , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland.,Neuchâtel Platform for Analytical Chemistry (NPAC) , University of Neuchâtel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| |
Collapse
|
14
|
Werner MS, Claaßen MH, Renahan T, Dardiry M, Sommer RJ. Adult Influence on Juvenile Phenotypes by Stage-Specific Pheromone Production. iScience 2018; 10:123-134. [PMID: 30513394 PMCID: PMC6279967 DOI: 10.1016/j.isci.2018.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Many animal and plant species respond to population density by phenotypic plasticity. To investigate if specific age classes and/or cross-generational signaling affect density-dependent plasticity, we developed a dye-based method to differentiate co-existing nematode populations. We applied this method to Pristionchus pacificus, which develops a predatory mouth form to exploit alternative resources and kill competitors in response to high population densities. Remarkably, adult, but not juvenile, crowding induces the predatory morph in other juveniles. High-performance liquid chromatography-mass spectrometry of secreted metabolites combined with genetic mutants traced this result to the production of stage-specific pheromones. In particular, the P. pacificus-specific di-ascaroside#1 that induces the predatory morph is induced in the last juvenile stage and young adults, even though mouth forms are no longer plastic in adults. Cross-generational signaling between adults and juveniles may serve as an indication of rapidly increasing population size, arguing that age classes are an important component of phenotypic plasticity.
Collapse
Affiliation(s)
- Michael S Werner
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Marc H Claaßen
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Tess Renahan
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Mohannad Dardiry
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ralf J Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany.
| |
Collapse
|
15
|
McGrath PT, Ruvinsky I. A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. ACTA ACUST UNITED AC 2018; 13:23-30. [PMID: 30984890 DOI: 10.1016/j.coisb.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Individuals communicate information about their age, sex, social status, and recent life history with other members of their species through the release of pheromones, chemical signals that elicit behavioral or physiological changes in the recipients. Pheromones provide a fascinating example of information exchange: animals have evolved intraspecific languages in the presence of eavesdroppers and cheaters. In this review, we discuss the recent work using the nematode C. elegans to decipher its chemical language through the analysis of ascaroside pheromones. Genetic dissection has started to identify the enzymes that produce pheromones and the neural circuits that process these signals. Ecological experiments have characterized the biotic environment of C. elegans and its relatives, including ecological relationships with a variety of species that sense or release similar blends of ascarosides. Systems biology approaches should be fruitful in understanding the organization and function of communication systems in C. elegans.
Collapse
Affiliation(s)
- Patrick T McGrath
- Department of Biological Sciences, Department of Physics; Georgia Institute of Technology, Atlanta, GA 30332.
| | - Ilya Ruvinsky
- Department of Molecular Biosciences; Northwestern University, Evanston, IL 60208.
| |
Collapse
|