1
|
Peng Z, Xiao Q, Xia Y, Xia M, Yu J, Fang P, Tang Y, Yu B. Stereoselective chemical N-glycoconjugation of amines via CO 2 incorporation. Nat Commun 2024; 15:10373. [PMID: 39613767 DOI: 10.1038/s41467-024-54523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
Chemical N-glycoconjugation can provide a unique way to tailor the properties of the ubiquitous amines for further expending their diverse functions and applications. Nevertheless, effective methodology for glycoconjugation of amines remains largely underdeveloped. Inspired by a biotransformation pathway of amine-containing drugs in vivo, we have developed an effective protocol that enables one-step chemical N-glycoconjugation of amines in high stereoselectivity under mild conditions. This protocol involves conversion of the amine moiety into the corresponding carbamate anion under CO2 atmosphere and a subsequent SN2 type reaction with glycosyl halides. This work provides an example of using CO2 as the coupling unit in chemical glycoconjugation reactions. A case study on the resulting N-glycoconjugates of Crizotinib, an anticancer drug, demonstrates a quick cleavage of the glucosyl carbamate linkage, testifying that this N-glyconjugation method could serve as a general approach to procure novel prodrugs.
Collapse
Affiliation(s)
- Zihan Peng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qian Xiao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mingyu Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jia Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pengfei Fang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
2
|
Wei L, Guo Y, Li Z, Jiang H, Qi C. Silver-Catalyzed Coupling of Ethynylbenziodoxolones with CO 2 and Amines to Afford O-β-Oxoalkyl Carbamates. Org Lett 2024. [PMID: 38780900 DOI: 10.1021/acs.orglett.4c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A novel three-component coupling reaction of ethynylbenziodoxolones (EBXs) with CO2 and amines has been achieved via silver catalysis, thereby providing an efficient method for the construction of a range of structurally diverse and valuable O-β-oxoalkyl carbamates. The transformation proceeds under mild reaction conditions and exhibits a wide substrate scope and good functional group compatibility. In addition, this strategy could be extended to the synthesis of α-acyloxyketones using carboxylic acids as the nucleophiles to react with EBXs.
Collapse
Affiliation(s)
- Li Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yanhui Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ziyang Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
3
|
Kundu S, Maji MS. Solution-Phase Late-Stage Chemoselective Photocatalytic Removal of Sulfonyl and Phenacyl Groups in Peptides. Chemistry 2024; 30:e202400033. [PMID: 38345998 DOI: 10.1002/chem.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 03/07/2024]
Abstract
Herein, BPC catalyzed visible-light-triggered target-specific late-stage solution phase desulfonylation from tryptophan in oligopeptides is portrayed by overcoming the isolation issue up to octamers. This robust and mild method is highly predictable and chemoselective, tolerating myriad of functional groups in aza-heteroaromatics and peptides. Interestingly, reductive desulfonylation is also amenable to biologically significant reactive histidine and tyrosine side chains, signifying the versatility of the strategy. Additional efficacy of BPC is demonstrated by solution phase phenacyl deprotection from C-terminal in peptides. Furthermore, excellent catalyst loading of 0.5 mol% and recyclability demonstrate the practical utility and applicability of this strategy.
Collapse
Affiliation(s)
- Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
4
|
Constantin T, Górski B, Tilby MJ, Chelli S, Juliá F, Llaveria J, Gillen KJ, Zipse H, Lakhdar S, Leonori D. Halogen-atom and group transfer reactivity enabled by hydrogen tunneling. Science 2022; 377:1323-1328. [DOI: 10.1126/science.abq8663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The generation of carbon radicals by halogen-atom and group transfer reactions is generally achieved using tin and silicon reagents that maximize the interplay of enthalpic (thermodynamic) and polar (kinetic) effects. In this work, we demonstrate a distinct reactivity mode enabled by quantum mechanical tunneling that uses the cyclohexadiene derivative γ-terpinene as the abstractor under mild photochemical conditions. This protocol activates alkyl and aryl halides as well as several alcohol and thiol derivatives. Experimental and computational studies unveiled a noncanonical pathway whereby a cyclohexadienyl radical undergoes concerted aromatization and halogen-atom or group abstraction through the reactivity of an effective H atom. This activation mechanism is seemingly thermodynamically and kinetically unfavorable but is rendered feasible through quantum tunneling.
Collapse
Affiliation(s)
| | - Bartosz Górski
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Michael J. Tilby
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Saloua Chelli
- CNRS/Université Toulouse III—Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 31062 Toulouse Cedex 09, France
| | - Fabio Juliá
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Josep Llaveria
- Global Discovery Chemistry, Therapeutics Discovery, Janssen Research & Development, Janssen-Cilag S.A., 45007 Toledo, Spain
| | - Kevin J. Gillen
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Hendrik Zipse
- Department Chemie, LMU München, D-81377 München, Germany
| | - Sami Lakhdar
- CNRS/Université Toulouse III—Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 31062 Toulouse Cedex 09, France
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
5
|
Pradhan S, Sankar RV, Gunanathan C. A Boron-Nitrogen Double Transborylation Strategy for Borane-Catalyzed Hydroboration of Nitriles. J Org Chem 2022; 87:12386-12396. [PMID: 36045008 DOI: 10.1021/acs.joc.2c01655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Organoborane-catalyzed hydroboration of nitriles provides N,N-diborylamines, which act as efficient synthons for the synthesis of primary amines and secondary amides. Known nitrile hydroboration methods are dominated by metal catalysis. Simple and metal-free hydroboration of nitriles using diborane [H-B-9-BBN]2 as a catalyst and pinacolborane as a turnover reagent is reported. The reaction of monomeric H-B-9-BBN with nitriles leads to the hydrido-bridged diborylimine intermediate; a subsequent sequential double hydroboration-transborylation pathway involving B-N/B-H σ bond metathesis is proposed.
Collapse
Affiliation(s)
- Subham Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| |
Collapse
|
6
|
García‐Vázquez V, Carretero Cerdán A, Sanz‐Marco A, Gómez‐Bengoa E, Martín‐Matute B. An Expedient Method for the Umpolung Coupling of Enols with Heteronucleophiles**. Chemistry 2022; 28:e202201000. [PMID: 35638139 PMCID: PMC9400875 DOI: 10.1002/chem.202201000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/08/2022]
Abstract
In this paper, we present an unprecedented and general umpolung protocol that allows the functionalization of silyl enol ethers and of 1,3‐dicarbonyl compounds with a large range of heteroatom nucleophiles, including carboxylic acids, alcohols, primary and secondary amines, azide, thiols, and also anionic carbamates derived from CO2. The scope of the reaction also extends to carbon‐based nucleophiles. The reaction relies on the use of 1‐bromo‐3,3‐dimethyl‐1,3‐dihydro‐1λ3[d][1,2]iodaoxole, which provides a key α‐brominated carbonyl intermediate. The reaction mechanism has been studied experimentally and by DFT, and we propose formation of an unusual enolonium intermediate with a halogen‐bonded bromide.
Collapse
Affiliation(s)
| | - Alba Carretero Cerdán
- Department of Organic Chemistry Stockholm University Stockholm 10691 Sweden
- Departamento de Química Orgánica I Universidad Pais Vasco, UPV/EHU 20080 Donostia-San Sebastián Spain
| | - Amparo Sanz‐Marco
- Department of Organic Chemistry Stockholm University Stockholm 10691 Sweden
| | - Enrique Gómez‐Bengoa
- Departamento de Química Orgánica I Universidad Pais Vasco, UPV/EHU 20080 Donostia-San Sebastián Spain
| | | |
Collapse
|
7
|
Wang L, Qi C, Xiong W, Jiang H. Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64029-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Martens V, Görls H, Imhof W. Crystal structure of 2-oxo-1,2-di-phenyl-ethyl diiso-propyl-carbamate. Acta Crystallogr E Crystallogr Commun 2021; 77:1091-1094. [PMID: 34868642 PMCID: PMC8587984 DOI: 10.1107/s2056989021010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/06/2021] [Indexed: 04/05/2024]
Abstract
The title compound, C21H25NO3, crystallized as a racemic twin in the Sohnke space group P21. In the mol-ecular structure of the title compound, both enanti-omers show a highly similar conformation with the urethane function and the benzoyl group showing an almost perpendicular arrangement [the dihedral angle is 72.46 (8)° in the S-enanti-omer and 76.21 (8)° in the R-enanti-omer]. In the crystal structure, mol-ecules of both enanti-omers show infinite helical arrangements parallel to the b axis formed by weak C-H⋯O hydrogen bonds between the phenyl ring of the benzoyl group and the carbamate carbonyl group. In case of the R-enanti-omer, this helix is additionally stabilized by a bifurcated hydrogen bond between the carbonyl function of the benzoyl group towards both phenyl groups of the mol-ecule.
Collapse
Affiliation(s)
- Viktor Martens
- Institute of Integrated Natural Sciences, University Koblenz - Landau, Universitätsstr. 1, 56070 Koblenz, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Wolfgang Imhof
- Institute of Integrated Natural Sciences, University Koblenz - Landau, Universitätsstr. 1, 56070 Koblenz, Germany
| |
Collapse
|
9
|
Martens V, Görls H, Imhof W. Crystal structure of 2-oxo-2-phenyl-ethyl diiso-propyl-carbamate. Acta Crystallogr E Crystallogr Commun 2021; 77:785-787. [PMID: 34422301 PMCID: PMC8340964 DOI: 10.1107/s2056989021006927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 11/12/2022]
Abstract
In the mol-ecular structure of the title compound, C15H21NO3, the urethane function and the benzoyl group are almost perpendicular to each other [dihedral angle 88.97 (5)°]. In the crystal structure, infinite supra-molecular layers in the bc plane are formed by weak C-H⋯O hydrogen bonds.
Collapse
Affiliation(s)
- Viktor Martens
- Institute of Integrated Natural Sciences, University Koblenz - Landau, Universitätsstr. 1, 56070 Koblenz, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Wolfgang Imhof
- Institute of Integrated Natural Sciences, University Koblenz - Landau, Universitätsstr. 1, 56070 Koblenz, Germany
| |
Collapse
|
10
|
Lineros-Rosa M, Cuquerella MC, Francés-Monerris A, Monari A, Miranda MA, Lhiaubet-Vallet V. Triplet stabilization for enhanced drug photorelease from sunscreen-based photocages. Org Biomol Chem 2021; 19:1752-1759. [PMID: 33355577 DOI: 10.1039/d0ob02244f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recently, sunscreen-based drug photocages have been introduced to provide UV protection to photoactive drugs, thus increasing their photosafety. Here, combined experimental and theoretical studies performed on a photocage based on the commercial UVA filter avobenzone (AB) and on the photosensitizing non-steroidal anti-inflammatory drug ketoprofen (KP) are presented unveiling the photophysical processes responsible for the light-triggered release. Particular attention is paid to solvent stabilization of the drug and UV filter excited states, respectively, which leads to a switching between the triplet excited state energies of the AB and KP units. Most notably, we show that the stabilization of the AB triplet excited state in ethanol solution is the key requirement for an efficient photouncaging. By contrast, in apolar solvents, in particular hexane, KP has the lowest triplet excited state, hence acting as an energy acceptor quenching the AB triplet manifold, thus inhibiting the desired photoreaction.
Collapse
Affiliation(s)
- Mauricio Lineros-Rosa
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain.
| | - M Consuelo Cuquerella
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain.
| | - Antonio Francés-Monerris
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France. and Departament de Química Física Universitat de València, 46100 Burjassot, Spain
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.
| | - Miguel A Miranda
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain.
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
11
|
Mathieu G, Patel H, Lebel H. Convenient Continuous Flow Synthesis of N-Methyl Secondary Amines from Alkyl Mesylates and Epoxides. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gary Mathieu
- Department of Chemistry and Center in Green Chemistry and Catalysis (CGCC), Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, QC H3C 3J7, Canada
| | - Heena Patel
- Department of Chemistry and Center in Green Chemistry and Catalysis (CGCC), Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, QC H3C 3J7, Canada
| | - Hélène Lebel
- Department of Chemistry and Center in Green Chemistry and Catalysis (CGCC), Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
12
|
Palladium-catalyzed regioselective cascade reaction of carbon dioxide, amines and allenes for the synthesis of functionalized carbamates. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9679-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Acharya V, Mal S, Kilaru JP, Montgomery MG, Deshpande SH, Sonawane RP, Manjunath BN, Pal S. Synthesis of Carbamates from Alkyl Bromides and Secondary Amines Using Silver Carbonate. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Vanitha Acharya
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
- Department of Chemistry; Mangalore University, Mangalagangothri; 576119 Karnataka India
| | - Sanjib Mal
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| | - Jagadeesh P. Kilaru
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| | - Mark G. Montgomery
- Jealott's Hill International Research Centre; Syngenta; 42 6EY Bracknell Berkshire United Kingdom
| | | | - Ravindra P. Sonawane
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| | - Bhanu N. Manjunath
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| | - Sitaram Pal
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| |
Collapse
|
14
|
Vargová D, Mudráková B, Némethová I, Šebesta R. Reductions of Imines Using Zirconocene Chloride Hydride. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Denisa Vargová
- Faculty of Natural Sciences; Department of Organic Chemistry; Comenius University in Bratislava; Mlynská dolina, Ilkovičova 6 84215 Bratislava Slovakia
| | - Brigita Mudráková
- Faculty of Natural Sciences; Department of Organic Chemistry; Comenius University in Bratislava; Mlynská dolina, Ilkovičova 6 84215 Bratislava Slovakia
| | - Ivana Némethová
- Faculty of Natural Sciences; Department of Organic Chemistry; Comenius University in Bratislava; Mlynská dolina, Ilkovičova 6 84215 Bratislava Slovakia
| | - Radovan Šebesta
- Faculty of Natural Sciences; Department of Organic Chemistry; Comenius University in Bratislava; Mlynská dolina, Ilkovičova 6 84215 Bratislava Slovakia
| |
Collapse
|
15
|
Yang Y, Lu Z, Xu X. Phenacyl Xanthates: A Photoremovable Protecting Group for Alcohols under Visible Light. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yong‐Qing Yang
- School of PharmacyJiangsu University No. 301 Xuefu Road Zhenjiang, Jiangsu Province 212013 China
| | - Zheng Lu
- School of PharmacyJiangsu University No. 301 Xuefu Road Zhenjiang, Jiangsu Province 212013 China
| | - Ximing Xu
- School of PharmacyJiangsu University No. 301 Xuefu Road Zhenjiang, Jiangsu Province 212013 China
| |
Collapse
|
16
|
Balybin AG, Panov YM, Erkhova LV, Lemenovskii DA, Krut’ko DP. Selective Hofmann alkylation of aromatic-aliphatic diamines in the presence of carbon dioxide. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Speckmeier E, Fischer TG, Zeitler K. A Toolbox Approach To Construct Broadly Applicable Metal-Free Catalysts for Photoredox Chemistry: Deliberate Tuning of Redox Potentials and Importance of Halogens in Donor-Acceptor Cyanoarenes. J Am Chem Soc 2018; 140:15353-15365. [PMID: 30277767 DOI: 10.1021/jacs.8b08933] [Citation(s) in RCA: 402] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The targeted choice of specific photocatalysts has been shown to play a critical role for the successful realization of challenging photoredox catalytic transformations. Herein, we demonstrate the successful implementation of a rational design strategy for a series of deliberate structural manipulations of cyanoarene-based, purely organic donor-acceptor photocatalysts, using 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as a starting point. Systematic modifications of both the donor substituents as well as the acceptors' molecular core allowed us to identify strongly oxidizing as well as strongly reducing catalysts (e.g., for an unprecedented detriflation of unactivated naphthol triflate), which additionally offer remarkably balanced redox potentials with predictable trends. Especially halogen arene core substitutions are instrumental for our targeted alterations of the catalysts' redox properties. Based on their preeminent electrochemical and photophysical characteristics, all novel, purely organic photoredox catalysts were evaluated in three challenging, mechanistically distinct classes of benchmark reactions (either requiring balanced, highly oxidizing or strongly reducing properties) to demonstrate their enormous potential as customizable photocatalysts, that outperform and complement prevailing typical best photocatalysts.
Collapse
Affiliation(s)
- Elisabeth Speckmeier
- Institut für Organische Chemie , Universität Leipzig , Johannisallee 29 , D-04103 Leipzig , Germany
| | - Tillmann G Fischer
- Institut für Organische Chemie , Universität Leipzig , Johannisallee 29 , D-04103 Leipzig , Germany
| | - Kirsten Zeitler
- Institut für Organische Chemie , Universität Leipzig , Johannisallee 29 , D-04103 Leipzig , Germany
| |
Collapse
|