1
|
Khatri BB, Chen L, Xu D, Salter R, Lin R. Hydroxylation of Substituted Anilides with Metallaphotocatalysis. ACS OMEGA 2024; 9:19982-19991. [PMID: 38737023 PMCID: PMC11079915 DOI: 10.1021/acsomega.3c10008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
We report the combination of organo-photocatalysis with transition metal (TM) catalysis for directed ortho-hydroxylation of substituted anilides for the synthesis of α-aminophenol derivatives under mild conditions. The developed metallaphotocatalysis utilizes N-pivaloyl as a directing group and phenyl iodine(III) bis(trifluoroacetate) (PIFA) in the combination of the 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) photocatalyst and [RuCl2(p-cymene)]2 TM catalyst under visible-light irradiation at room temperature. The hydroxylation reaction works well for a wide range of substrates containing electron-withdrawing substituents and could be applied to late-stage functionalization and ortho-hydroxyl metabolite generation for drug compounds-containing anilides with electron-withdrawing substituents in a single mild reaction.
Collapse
Affiliation(s)
- Buddha B. Khatri
- Global Discovery Chemistry, Janssen
Research & Development LLC, Johnson
& Johnson, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Lu Chen
- Global Discovery Chemistry, Janssen
Research & Development LLC, Johnson
& Johnson, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Dawei Xu
- Global Discovery Chemistry, Janssen
Research & Development LLC, Johnson
& Johnson, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Rhys Salter
- Global Discovery Chemistry, Janssen
Research & Development LLC, Johnson
& Johnson, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Ronghui Lin
- Global Discovery Chemistry, Janssen
Research & Development LLC, Johnson
& Johnson, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
2
|
Wu J, Sun P, Hong Y, Yang H, Xie M, Zhang J. Palladium-catalyzed interannular C-H amination of biaryl amines. Chem Commun (Camb) 2022; 58:13620-13623. [PMID: 36408627 DOI: 10.1039/d2cc05129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A palladium-catalyzed interannular C-H amination of biaryl amines with O-benzoylhydroxylamines is reported. This reaction undergoes smoothly with operational practicality and good tolerance of functional groups, thereby providing a concise synthesis of 2,2'-diaminobiaryls. Moreover, the readily accessible scale-up synthesis and the ability to transform the products into structurally diverse N-containing heterocycles demonstrate the synthetic potential of this catalytic protocol.
Collapse
Affiliation(s)
- Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Pengpeng Sun
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Yuwen Hong
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Haitao Yang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
3
|
Xu-Xu QF, Nishii Y, Miura M. Synthesis of Diarylselenides through Rh-Catalyzed Direct Diarylation of Elemental Selenium with Benzamides. J Org Chem 2022; 87:16887-16894. [DOI: 10.1021/acs.joc.2c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Qing-Feng Xu-Xu
- Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiative (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiative (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Tabaru K, Obora Y. Synergic Palladium Catalysis for Aerobic Oxidative Coupling. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuki Tabaru
- Kansai University: Kansai Daigaku Department of Chemistry and Materials Engineering 3-3-35 Yamate-cho 564-8680 Suita JAPAN
| | - Yasushi Obora
- Kansai University: Kansai Daigaku Department of Chemistry and Materials Engineering 3-3-35 Yamate-cho 564-8680 Suita JAPAN
| |
Collapse
|
5
|
Bakthadoss M, Reddy TT, Agarwal V, Sharada DS. Ester-directed orthogonal dual C-H activation and ortho aryl C-H alkenylation via distal weak coordination. Chem Commun (Camb) 2022; 58:1406-1409. [PMID: 34994762 DOI: 10.1039/d1cc06097j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented orthogonal cross-coupling between aromatic C(sp2) and aliphatic olefinic C(sp2) carbons of two same molecules via dual C-H bond activation in an intermolecular fashion has been developed using a distal ester-directing group. This new coupling reaction led to the synthesis of the highly functionalized 1,3-diaryl molecular architecture in very good yields and with high chemo- and regioselectivities. In addition, using ester as the distal directing group, ortho C-H olefination of α-methyl aryl acrylates and cinnamic esters with various alkenes has been achieved in very good yields and with a wide range of substrate scope.
Collapse
Affiliation(s)
| | | | - Vishal Agarwal
- Department of Chemistry, Pondicherry University, Pondicherry-605014, India.
| | - Duddu S Sharada
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Telangana-502285, India
| |
Collapse
|
6
|
Matsumoto K, Shindo M, Yoshida M. Development of Aerobic Oxidative Transformations of Aromatic C-H Bonds Using a Heterogeneous Metal Catalyst. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kenji Matsumoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University
| | | |
Collapse
|
7
|
Mei C, Zhao M, Lu W. Equivalent Loading of Directed Arenes in Pd(II)-Catalyzed Oxidative Cross-Coupling of Aryl C-H Bonds at Room Temperature. J Org Chem 2021; 86:2714-2733. [PMID: 33443427 DOI: 10.1021/acs.joc.0c02722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The unsymmetrical biaryls (Ar1-Ar2) produced by the catalytic cross-couplings of aryl halides (Ar1-halo) with aryl metallics (Ar2-M) in the loading ratio of 1:1 are popular in chemical synthesis. In contrast, there has been less precedence on the same biaryls produced effectively from two normal aryl C-H bonds with equivalent loading. Here, we report that, in a palladium/oxidant/acid catalytic system at room temperature, one arene (Ar1-H, 1 equiv) can highly selectively couple with the other one (Ar2-H, 1 equiv) to afford the target Ar1-Ar2 just by controlling the directing groups and the substituted groups on their phenyl rings. The utility of this one-one cross-coupling is also demonstrated by synthesis of a few bioactive molecules.
Collapse
Affiliation(s)
- Chong Mei
- Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mengdi Zhao
- Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenjun Lu
- Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
8
|
Wang D, Xu X, Zhang J, Zhao Y. Ligand Promoted Olefination of Anilides for Indirectly Introducing Fluorinated Functional Groups via Palladium Catalyst. J Org Chem 2021; 86:2696-2705. [PMID: 33502195 DOI: 10.1021/acs.joc.0c02701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a palladium-catalyzed, ligand promoted, C-H fluorine-containing olefination of anilides with 4-bromo-3,3,4,4-tetrafluorobutene as the fluorinated reagent, which has a potential transformation into other compounds due to its -CF2CF2Br functional group. -CF2CF2H was obtained by using the mild reducing agent sodium borohydride. Bioactive compounds such as aminoglutethimide derivative and propham were well-tolerated in this reaction, both of which highlight the synthetic importance of this method.
Collapse
Affiliation(s)
- Dongjie Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P.R. China.,Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xu Xu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P.R. China.,Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Jingyu Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P.R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R. China
| |
Collapse
|
9
|
Fiolek TJ, Magyar CL, Wall TJ, Davies SB, Campbell MV, Savich CJ, Tepe JJ, Mosey RA. Dihydroquinazolines enhance 20S proteasome activity and induce degradation of α-synuclein, an intrinsically disordered protein associated with neurodegeneration. Bioorg Med Chem Lett 2021; 36:127821. [PMID: 33513387 DOI: 10.1016/j.bmcl.2021.127821] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 02/02/2023]
Abstract
Aggregates or oligomeric forms of many intrinsically disordered proteins (IDPs), including α-synuclein, are hallmarks of neurodegenerative diseases, like Parkinson's and Alzheimer's disease, and key contributors to their pathogenesis. Due to their disordered nature and therefore lack of defined drug-binding pockets, IDPs are difficult targets for traditional small molecule drug design and are often referred to as "undruggable". The 20S proteasome is the main protease that targets IDPs for degradation and therefore small molecule 20S proteasome enhancement presents a novel therapeutic strategy by which these undruggable IDPs could be targeted. The concept of 20S activation is still relatively new, with few potent activators having been identified thus far. Herein, we synthesized and evaluated a library of dihydroquinazoline analogues and discovered several promising new 20S proteasome activators. Further testing of top hits revealed that they can enhance 20S mediated degradation of α-synuclein, the IDP associated with Parkinson's disease.
Collapse
Affiliation(s)
- Taylor J Fiolek
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Christina L Magyar
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Tyler J Wall
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Steven B Davies
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Molly V Campbell
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Christopher J Savich
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States
| | - Jetze J Tepe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States.
| | - R Adam Mosey
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, MI 49783, United States.
| |
Collapse
|
10
|
Matsumoto K, Toubaru Y, Tachikawa S, Miki A, Sakai K, Koroki S, Hirokane T, Shindo M, Yoshida M. Catalytic and Aerobic Oxidative Biaryl Coupling of Anilines Using a Recyclable Heterogeneous Catalyst for Synthesis of Benzidines and Bicarbazoles. J Org Chem 2020; 85:15154-15166. [PMID: 33226808 DOI: 10.1021/acs.joc.0c02020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, a heterogeneous rhodium-catalyzed oxidative homocoupling reaction of anilines utilizing molecular oxygen as the sole oxidant is reported. Employing a commercially available and recyclable Rh/C catalyst enabled the oxidative dimerization of various anilines, including N,N-disubstituted and N-monosubstituted anilines, as well as diarylamines, triarylamines, and carbazoles. Additionally, the catalytic protocol was extended to the ortho-ortho coupling of anilines, affording 2,2'-diaminobiphenyls with high regioselectivity. Notably, the developed approach provides rapid access to diversely functionalized benzidines and diaminobiphenyls in an operationally simple, practical, and environmentally friendly manner.
Collapse
Affiliation(s)
- Kenji Matsumoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yasunori Toubaru
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Shohei Tachikawa
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Ayaka Miki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Kentaro Sakai
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Syota Koroki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Tsukasa Hirokane
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Masahiro Yoshida
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
11
|
Long CY, Ni SF, Su MH, Wang XQ, Tan W. Highly Chemoselective Access to 2,2′-Diaminobiaryls via Ni-Catalyzed Protecting-Group-Free Coupling of 2-Haloanilines. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Cheng-Yu Long
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Min-Hui Su
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Xue-Qiang Wang
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
12
|
Tikhonova TA, Ilment NV, Lyssenko KA, Zavarzin IV, Volkova YA. Sulfur-mediated synthesis of unsymmetrically substituted N-aryl oxalamides by the cascade thioamidation/cyclocondensation and hydrolysis reaction. Org Biomol Chem 2020; 18:5050-5060. [PMID: 32578650 DOI: 10.1039/d0ob00811g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and straightforward synthesis of unsymmetrically substituted N-aryl oxalamides from 2,2'-biphenyldiamines, 2-chloroacetic acid derivatives, elemental sulfur, and water has been developed. This protocol is distinguished by efficiency in water under metal-free conditions for N-aryl oxalamides bearing a side-chain NH2-group; it can be adapted for scale-up synthesis. The scope and limitations of this transformation have been investigated.
Collapse
Affiliation(s)
- Tatyana A Tikhonova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation.
| | - Nikita V Ilment
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation.
| | - Konstantin A Lyssenko
- G.V. Plekhanov Russian University of Economics, 36 Stremyanny Per., Moscow 117997, Russian Federation and Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation.
| | - Yulia A Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation.
| |
Collapse
|
13
|
Gramage-Doria R. Steering Site-Selectivity in Transition Metal-Catalyzed C-H Bond Functionalization: the Challenge of Benzanilides. Chemistry 2020; 26:9688-9709. [PMID: 32237177 DOI: 10.1002/chem.202000672] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/18/2020] [Indexed: 12/31/2022]
Abstract
Selective C-H bond functionalization catalyzed by metal complexes have completely revolutionized the way in which chemical synthesis is conceived nowadays. Typically, the reactivity of a transition metal catalyst is the key to control the site-, regio- and/or stereo-selectivity of a C-H bond functionalization. Of particular interests are molecules that contain multiple C-H bonds prone to undergo C-H bond activations with very similar bond dissociation energies at different positions. This is the case of benzanilides, relevant chemical motifs that are found in many useful fine chemicals, in which two C-H sites are present in chemically different aromatic fragments. In the last years, it has been found that depending on the metal catalyst and the reaction conditions, the amide motif might behave as a directing group towards the metal-catalyzed C-H bond activation in the benzamide site or in the anilide site. The impact and the consequences of such subtle control of site-selectivity are herein reviewed with important applications in carbon-carbon and carbon-heteroatom bond forming processes. The mechanisms unraveling these unique transformations are discussed in order to provide a better understanding for future developments in the field of site-selective C-H bond functionalization with transition metal catalysts.
Collapse
|
14
|
Schulz L, Husmann JÅ, Waldvogel SR. Outstandingly robust anodic dehydrogenative aniline coupling reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Luo MJ, Li Y, Ouyang XH, Li JH, He DL. Electrochemical dehydrogenative cross-coupling of two anilines: facile synthesis of unsymmetrical biaryls. Chem Commun (Camb) 2020; 56:2707-2710. [DOI: 10.1039/c9cc09879h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New ortho/para-selective dehydrogenative cross-coupling of aryl amines for producing biaryls and incorporating pharmacophores is depicted.
Collapse
Affiliation(s)
- Mu-Jia Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
| | - Yang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
16
|
Li X, Wang J, Xie X, Dai W, Han X, Chen K, Liu H. Ir(iii)-Catalyzed direct C–H functionalization of N-phenylacetamide with α-diazo quinones: a novel strategy for producing 2-hydroxy-2′-amino-1,2′-biaryl scaffolds. Chem Commun (Camb) 2020; 56:3441-3444. [DOI: 10.1039/c9cc08297b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel strategy is reported for the construction of 2-hydroxy-2′-amino-1,1′-biaryl scaffolds via Ir(iii)-catalyzed direct C–H bond activation under mild reaction conditions.
Collapse
Affiliation(s)
- Xingjun Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
| | - Jiang Wang
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Xiong Xie
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Wenhao Dai
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
| | - Xu Han
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Kaixian Chen
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
| | - Hong Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research
| |
Collapse
|
17
|
Tikhonova TA, Lyssenko KA, Zavarzin IV, Volkova YA. Synthesis of Dibenzo[ d, f][1,3]Diazepines via Elemental Sulfur-Mediated Cyclocondensation of 2,2'-Biphenyldiamines with 2-Chloroacetic Acid Derivatives. J Org Chem 2019; 84:15817-15826. [PMID: 31729874 DOI: 10.1021/acs.joc.9b02002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The three-component reaction of 2,2'-biphenyldiamines with 2-chloroacetic acid derivatives and elemental sulfur was developed for the practical synthesis of unknown 2-carboxamide-substituted dibenzo[d,f][1,3]diazepines. This protocol is distinguished by efficiency in water and good tolerance to functional groups and can be adapted to a large-scale synthesis. The chemoselective preparation of a variety of 2-S,N,O-substituted dibenzo[d,f][1,3]diazepines was accomplished using the developed method.
Collapse
Affiliation(s)
- Tatyana A Tikhonova
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 47 Leninsky prosp ., Moscow 119991 , Russia
| | - Konstantin A Lyssenko
- Department of Chemistry , Lomonosov Moscow State University , Leninskie Gory 1-3 , Moscow 119991 , Russia.,Plekhanov Russian University of Economics , Stremyanny per. 36 , Moscow 117997 , Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 47 Leninsky prosp ., Moscow 119991 , Russia
| | - Yulia A Volkova
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 47 Leninsky prosp ., Moscow 119991 , Russia
| |
Collapse
|
18
|
Abstract
N-Aryl amides are an important class of compounds in pharmaceutical and agrochemical chemistry. Rapid and low-cost synthesis of N-aryl amides remains in high demand. Herein, we disclose an operationally simple process to access N-aryl amides directly from readily available nitroarenes and carboxylic acids as coupling substrates. This method involves the in situ activation of carboxylic acids to acyloxyphosphonium salt for one-pot amidation, without the need for isolation of the corresponding synthetic intermediates. Furthermore, the ease of preparation and workup allow the quick and efficient synthesis of a wide range of N-aryl amides, including several amide-based druglike and agrochemical molecules.
Collapse
Affiliation(s)
- Shao-Peng Wang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072; and Joint School of NUS & TJU , International Campus of Tianjin University , Fuzhou 350207 , P. R. of China
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072; and Joint School of NUS & TJU , International Campus of Tianjin University , Fuzhou 350207 , P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072; and Joint School of NUS & TJU , International Campus of Tianjin University , Fuzhou 350207 , P. R. of China
| |
Collapse
|
19
|
Zhang L, Wang Y, Shi Y, Wu Y, Lan J, Ma W, You J. Highly Regio- and Chemoselective Oxidative C–H/C–H Cross-Couplings of Anilines and Phenols Enabled by a Co-Oxidant-Free Rh(I)/Zn(NTf2)2/Air Catalytic System. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Luoqiang Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yanbing Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yang Shi
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yimin Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Weixin Ma
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
20
|
Dabiri M, Osmani C, Nikbakht R, Movahed SK. Palladium‐Catalyzed Regioselective C‐H Bond ortho‐Acetylation and Oxidative Homocoupling of N‐Arylcarbamates. ChemistrySelect 2019. [DOI: 10.1002/slct.201803053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Minoo Dabiri
- Faculty of Chemistry and Petroleum SciencesShahid Beheshti University Tehran Province Tehran, District 1, Daneshjou Boulevard 1983969411
| | - Chiman Osmani
- Faculty of Chemistry and Petroleum SciencesShahid Beheshti University Tehran Province Tehran, District 1, Daneshjou Boulevard 1983969411
| | - Roonak Nikbakht
- Faculty of Chemistry and Petroleum SciencesShahid Beheshti University Tehran Province Tehran, District 1, Daneshjou Boulevard 1983969411
| | - Siyavash Kazemi Movahed
- Faculty of Chemistry and Petroleum SciencesShahid Beheshti University Tehran Province Tehran, District 1, Daneshjou Boulevard 1983969411
| |
Collapse
|
21
|
Shi Y, Liu J, Yang Y, You J. General rhodium-catalyzed oxidative cross-coupling reactions between anilines: synthesis of unsymmetrical 2,2′-diaminobiaryls. Chem Commun (Camb) 2019; 55:5475-5478. [DOI: 10.1039/c9cc01733j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described herein is a dual chelation-assisted RhCl3-catalyzed oxidative C–H/C–H cross-coupling reaction of aniline derivatives, in which the chemo- and regioselective cross-coupling between electronically similar substrates is achieved.
Collapse
Affiliation(s)
- Yang Shi
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University
- Chengdu 610064
- P. R. China
| | - Jiahui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University
- Chengdu 610064
- P. R. China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University
- Chengdu 610064
- P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
22
|
Zhang L, Zhu L, Zhang Y, Yang Y, Wu Y, Ma W, Lan Y, You J. Experimental and Theoretical Studies on Ru(II)-Catalyzed Oxidative C–H/C–H Coupling of Phenols with Aromatic Amides Using Air as Oxidant: Scope, Synthetic Applications, and Mechanistic Insights. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02816] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Luoqiang Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
| | - Yuming Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yimin Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Weixin Ma
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|