1
|
Betinol IO, Kuang Y, Mulley BP, Reid JP. Controlling Stereoselectivity with Noncovalent Interactions in Chiral Phosphoric Acid Organocatalysis. Chem Rev 2025; 125:4184-4286. [PMID: 40101184 DOI: 10.1021/acs.chemrev.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chiral phosphoric acids (CPAs) have emerged as highly effective Brønsted acid catalysts in an expanding range of asymmetric transformations, often through novel multifunctional substrate activation modes. Versatile and broadly appealing, these catalysts benefit from modular and tunable structures, and compatibility with additives. Given the unique types of noncovalent interactions (NCIs) that can be established between CPAs and various reactants─such as hydrogen bonding, aromatic interactions, and van der Waals forces─it is unsurprising that these catalyst systems have become a promising approach for accessing diverse chiral product outcomes. This review aims to provide an in-depth exploration of the mechanisms by which CPAs impart stereoselectivity, positioning NCIs as the central feature that connects a broad spectrum of catalytic reactions. Spanning literature from 2004 to 2024, it covers nucleophilic additions, radical transformations, and atroposelective bond formations, highlighting the applicability of CPA organocatalysis. Special emphasis is placed on the structural and mechanistic features that govern CPA-substrate interactions, as well as the tools and techniques developed to enhance our understanding of their catalytic behavior. In addition to emphasizing mechanistic details and stereocontrolling elements in individual reactions, we have carefully structured this review to provide a natural progression from these specifics to a broader, class-level perspective. Overall, these findings underscore the critical role of NCIs in CPA catalysis and their significant contributions to advancing asymmetric synthesis.
Collapse
Affiliation(s)
- Isaiah O Betinol
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yutao Kuang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian P Mulley
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Handjaya JP, Patankar N, Reid JP. The Diversity and Evolution of Chiral Brønsted Acid Structures. Chemistry 2024; 30:e202400921. [PMID: 38706381 DOI: 10.1002/chem.202400921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
The chemical space of chiral Brønsted acid catalysts is defined by quantity and complexity, reflecting the diverse synthetic challenges confronted and the innovative molecular designs introduced. Here, we detail how this successful outcome is a powerful demonstration of the benefits of utilizing both local structure searches and a comprehensive understanding of catalyst performance for effective and efficient exploration of Brønsted acid properties. In this concept article we provide an evolutionary overview of this field by summarizing the approaches to catalyst optimization, the resulting structures, and functions.
Collapse
Affiliation(s)
- Jasemine P Handjaya
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Niraja Patankar
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
3
|
Taggart EL, Wolff EJ, Yanar P, Blobe JP, Shugrue CR. Development of an oxazole-based cleavable linker for peptides. Bioorg Med Chem 2024; 102:117663. [PMID: 38457910 DOI: 10.1016/j.bmc.2024.117663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
We report the development of a new oxazole-based cleavable linker to release peptides from attached cargo. Oxazoles are stable to most reaction conditions, yet they can be rapidly cleaved in the presence of single-electron oxidants like cerium ammonium nitrate (CAN). An oxazole linker could be synthesized and attached to peptides through standard solid-phase peptide coupling reactions. Cleavage of these peptide-oxazole conjugates is demonstrated on a broad scope of peptides containing various natural and unnatural amino acids. These results represent the first example of a peptide-based linker that is cleaved through single-electron oxidation. The oxazole is also demonstrated to be a suitable linker for both the release of a peptide from a conjugated small molecule and the orthogonal release of cargo from a peptide containing multiple cleavable linkers. Oxazole linkers could serve as a promising tool for peptide screening platforms such as peptide-encoded libraries.
Collapse
Affiliation(s)
- Elizabeth L Taggart
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - Evan J Wolff
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - Pamira Yanar
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - John P Blobe
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - Christopher R Shugrue
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States.
| |
Collapse
|
4
|
Liu J, Du YY, He YS, Liang Y, Liu SZ, Li YY, Cao YM. Parallel kinetic resolution of aziridines via chiral phosphoric acid-catalyzed apparent hydrolytic ring-opening. Chem Sci 2023; 14:12152-12159. [PMID: 37969581 PMCID: PMC10631200 DOI: 10.1039/d3sc03899h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023] Open
Abstract
We report a chiral phosphoric acid catalyzed apparent hydrolytic ring-opening reaction of racemic aziridines in a regiodivergent parallel kinetic resolution manner. Harnessing the acyloxy-assisted strategy, the highly stereocontrolled nucleophilic ring-opening of aziridines with water is achieved. Different kinds of aziridines are applicable in the process, giving a variety of enantioenriched aromatic or aliphatic amino alcohols with up to 99% yields and up to >99.5 : 0.5 enantiomeric ratio. Preliminary mechanistic study as well as product elaborations were inducted as well.
Collapse
Affiliation(s)
- Juan Liu
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yi-Ying Du
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yu-Shi He
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yan Liang
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Shang-Zhong Liu
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yi-Yi Li
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yi-Ming Cao
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| |
Collapse
|
5
|
Applications of Hantzsch Esters in Organocatalytic Enantioselective Synthesis. Catalysts 2023. [DOI: 10.3390/catal13020419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Hantzsch esters (1,4-dihydropyridine dicarboxylates) have become, in this century, very versatile reagents for enantioselective organic transformations. They can act as hydride transfer agents to reduce, regioselectively, a variety of multiple bonds, e.g., C=C and C=N, under mild reaction conditions. They are excellent reagents for the dearomatization of heteroaromatic substances, and participate readily in cascade processes. In the last few years, they have also become useful reagents for photoredox reactions. They can participate as sacrificial electron and hydrogen donors and when 4-alkyl or 4-acyl-substituted, they can act as alkyl or acyl radical transfer agents. These last reactions may take place in the presence or absence of a photocatalyst. This review surveys the literature published in this area in the last five years.
Collapse
|
6
|
Seitz A, Wende RC, Schreiner PR. Site-Selective Acylation of Pyranosides with Immobilized Oligopeptide Catalysts in Flow. Chemistry 2022; 29:e202203002. [PMID: 36538197 DOI: 10.1002/chem.202203002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
We report the site-selective acetylation of partially protected monosaccharides using immobilized oligopeptide catalysts, which are readily accessible via solid-phase peptide synthesis. The catalysts are able to invert the intrinsic selectivity, which was determined using N-methylimidazole, for a variety of pyranosides. We demonstrate that the catalysts are stable for multiple reaction cycles and can be easily reused after separation from the reaction solution. The catalysts can also be used in flow without loss of reactivity and selectivity.
Collapse
Affiliation(s)
- Alexander Seitz
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Raffael C Wende
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
7
|
Crawford JM, Kingston C, Toste FD, Sigman MS. Data Science Meets Physical Organic Chemistry. Acc Chem Res 2021; 54:10.1021/acs.accounts.1c00285. [PMID: 34351757 PMCID: PMC9078128 DOI: 10.1021/acs.accounts.1c00285] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ConspectusAt the heart of synthetic chemistry is the holy grail of predictable catalyst design. In particular, researchers involved in reaction development in asymmetric catalysis have pursued a variety of strategies toward this goal. This is driven by both the pragmatic need to achieve high selectivities and the inability to readily identify why a certain catalyst is effective for a given reaction. While empiricism and intuition have dominated the field of asymmetric catalysis since its inception, enantioselectivity offers a mechanistically rich platform to interrogate catalyst-structure response patterns that explain the performance of a particular catalyst or substrate.In the early stages of an asymmetric reaction development campaign, the overarching mechanism of the reaction, catalyst speciation, the turnover limiting step, and many other details are unknown or posited based on related reactions. Considering the unclear details leading to a successful reaction, initial enantioselectivity data are often used to intuitively guide the ultimate direction of optimization. However, if the conditions of the Curtin-Hammett principle are satisfied, then measured enantioselectivity can be directly connected to the ensemble of diastereomeric transition states (TSs) that lead to the enantiomeric products, and the associated free energy difference between competing TSs (ΔΔG⧧ = -RT ln[(S)/(R)], where (S) and (R) represent the concentrations of the enantiomeric products). We, and others, speculated that this important piece of information can be leveraged to guide reaction optimization in a quantitative way.Although traditional linear free energy relationships (LFERs), such as Hammett plots, have been used to illuminate important mechanistic features, we sought to develop data science derived tools to expand the power of LFERs in order to describe complex reactions frequently encountered in modern asymmetric catalysis. Specifically, we investigated whether enantioselectivity data from a reaction can be quantitatively connected to the attributes of reaction components, such as catalyst and substrate structural features, to harness data for asymmetric catalyst design.In this context, we developed a workflow to relate computationally derived features of reaction components to enantioselectivity using data science tools. The mathematical representation of molecules can incorporate many aspects of a transformation, such as molecular features from substrate, product, catalyst, and proposed transition states. Statistical models relating these features to reaction outputs can be used for various tasks, such as performance prediction of untested molecules. Perhaps most importantly, statistical models can guide the generation of mechanistic hypotheses that are embedded within complex patterns of reaction responses. Overall, merging traditional physical organic experiments with statistical modeling techniques creates a feedback loop that enables both evaluation of multiple mechanistic hypotheses and future catalyst design. In this Account, we highlight the evolution and application of this approach in the context of a collaborative program based on chiral phosphoric acid catalysts (CPAs) in asymmetric catalysis.
Collapse
Affiliation(s)
- Jennifer M Crawford
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Cian Kingston
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
An X, Wu Y. Synthesis of (+)-Panamonon B, 7- epi-Panamonon B, and Their ( Z)-Isomers. J Org Chem 2021; 86:11948-11959. [PMID: 34351744 DOI: 10.1021/acs.joc.1c01344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(+)-Panamonon B was synthesized with the key quaternary center (of a predefined absolute configuration) installed using Stoltz asymmetric allylation. The C-5 ketone functionality and the cross-conjugated enone moiety in the side chain were introduced via a photosensitized [2+4] cycloaddition of singlet oxygen to diene silyl enol ether and an aldol condensation under the conditions of Sugiura, respectively. The 1H and 13C NMR of the synthetic and natural samples were fully consistent with each other. However, because two samples showed opposite signs for optical rotations, they must be antipodes to one another. The synthesis also provided valuable chances to observe unexpected, yet rather intriguing, phenomena such as a bulky substituent in an axial position of a cyclohexane ring and (E)-and (Z)-isomers with opposite signs for optical rotations despite their identical stereogenic centers. The rare occurrence of a bulky substituent in an axial position of a cyclohexane ring is rationalized as a consequence of the presence of a quaternary center and formation of the five-membered lactone fused to the six-membered ring, while the so far unnoticed influence of C═C geometry on optical rotation is shown to be consistent with the information encapsulated in several discrete pairs of similar compounds retrieved from the literature.
Collapse
Affiliation(s)
- Xiaosheng An
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry and the University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Yikang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry and the University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| |
Collapse
|
9
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
10
|
Cao Y, Zhang S, Antilla JC. Catalytic Asymmetric 1,4-Reduction of α-Branched 2-Vinyl-azaarenes by a Chiral SPINOL-Derived Borophosphate. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Cao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Shouqi Zhang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jon C. Antilla
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- School of Sciences, Zhejiang Sci-Tech University, Hangzhou City, Zhejiang Province 310018, P. R. China
| |
Collapse
|
11
|
Borges‐González J, García‐Monzón I, Martín T. Conformational Control of Tetrahydropyran‐Based Hybrid Dipeptide Catalysts Improves Activity and Stereoselectivity. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jorge Borges‐González
- Instituto de Productos Naturales y AgrobiologíaCSIC Francisco Sánchez, 3 38206 La Laguna, Tenerife Spain
- Doctoral and Postgraduate SchoolUniversity of La Laguna
| | - Irma García‐Monzón
- Instituto de Productos Naturales y AgrobiologíaCSIC Francisco Sánchez, 3 38206 La Laguna, Tenerife Spain
- Doctoral and Postgraduate SchoolUniversity of La Laguna
| | - Tomás Martín
- Instituto de Productos Naturales y AgrobiologíaCSIC Francisco Sánchez, 3 38206 La Laguna, Tenerife Spain
- Instituto Universitario de Bio-Orgánica “Antonio González” CIBICANUniversidad de La Laguna, Francisco Sánchez, 2 38206 La Laguna, Tenerife Spain
| |
Collapse
|
12
|
Shugrue CR, Sculimbrene BR, Jarvo ER, Mercado BQ, Miller SJ. Outer-Sphere Control for Divergent Multicatalysis with Common Catalytic Moieties. J Org Chem 2019; 84:1664-1672. [PMID: 30608173 PMCID: PMC6358474 DOI: 10.1021/acs.joc.8b03068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report two examples of one-pot, simultaneous reactions, mediated by multiple, orthogonal catalysts with the same catalytic motif. First, BINOL-derived chiral phosphoric acids (CPA) and phosphothreonine (pThr)-embedded peptides were found to be matched for two different steps in double reductions of bisquinolines. Next, two π-methylhistidine (Pmh)-containing peptides catalyzed enantio- and chemoselective acylations and phosphorylations of multiple substrates in one pot. The selectivity exhibited by common reactive moieties is adjusted solely by the appended chiral scaffold through outer-sphere interactions.
Collapse
Affiliation(s)
- Christopher R. Shugrue
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | | | | | - Brandon Q. Mercado
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | | |
Collapse
|
13
|
Featherston AL, Shugrue CR, Mercado BQ, Miller SJ. Phosphothreonine (pThr)-Based Multifunctional Peptide Catalysis for Asymmetric Baeyer-Villiger Oxidations of Cyclobutanones. ACS Catal 2019; 9:242-252. [PMID: 31007966 DOI: 10.1021/acscatal.8b04132] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biologically inspired phosphothreonine (pThr)-embedded peptides that function as chiral Brønsted acid catalysts for enantioselective Baeyer-Villiger oxidations (BV) of cyclobutanones with aqueous H2O2 are reported herein. Complementary to traditional BINOL-derived chiral phosphoric acids (CPAs), the functional diversity of the peptidic scaffold provides the opportunity for multiple points of contact with substrates via hydrogen bonding, and the ease of peptide synthesis facilitates rapid diversification of the catalyst structure, such that numerous unique peptide-based CPA catalysts have been prepared. Utilizing a hypothesis-driven design, we identified a pThr-based catalyst that contains an N-acylated diaminopropionic acid (Dap) residue, which achieves high enantioselectivity with catalyst loadings as low as 0.5 mol%. The power of peptide-based multi-site binding is further exemplified through reversal in the absolute stereochemical outcome upon repositioning of the substrate-directing group (ortho- to meta). Modifications to the i+3 residue (LDap to LPhe) lead to an observed enantiodivergence without inversion of any stereogenic center on the peptide catalyst, due to noncovalent interactions. Structure-selectivity and 1H-1H-ROESY studies revealed that the proposed hydrogen bonding interactions are essential for high levels of enantioinduction. The ability for the phosphopeptides to operate as multifunctional oxidation catalysts expands the scope of pThr catalysts and provides a framework for the future selective diversification of more complex substrates, including natural products.
Collapse
Affiliation(s)
- Aaron L. Featherston
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
14
|
Yan XC, Metrano AJ, Robertson MJ, Abascal NC, Tirado-Rives J, Miller SJ, Jorgensen WL. Molecular Dynamics Simulations of a Conformationally Mobile Peptide-Based Catalyst for Atroposelective Bromination. ACS Catal 2018; 8:9968-9979. [PMID: 30687577 DOI: 10.1021/acscatal.8b03563] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is widely accepted that structural rigidity is required to achieve high levels of asymmetric induction in catalytic, enantioselective reactions. This fundamental design principle often does not apply to highly selective catalytic peptides that often exhibit conformational heterogeneity. As a result, these complex systems are particularly challenging to study both experimentally and computationally. Herein, we utilize molecular dynamics simulations to investigate the role of conformational mobility on the reactivity and selectivity exhibited by a catalytic, β-turn-biased peptide in an atroposelective bromination reaction. By means of cluster analysis, multiple distinct conformers of the peptide and a catalyst-substrate complex were identified in the simulations, all of which were corroborated by experimental NMR measurements. The simulations also revealed that a shift in the conformational equilibrium of the peptidic catalyst occurs upon addition of substrate, and the degree of change varies among different substrates. On the basis of these data, we propose a correlation between the composition of the peptide conformational ensemble and its catalytic properties. Moreover, these findings highlight the importance of conformational dynamics in catalytic, asymmetric reactions mediated by oligopeptides, unveiled through high-level, state-of-the-art computational modeling.
Collapse
Affiliation(s)
- Xin Cindy Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Anthony J. Metrano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Michael J. Robertson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Nadia C. Abascal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Julian Tirado-Rives
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - William L. Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|