1
|
Abdiyan Mobarakeh F, Rezaei-Gohar M, Amiri K, Bijanzadeh HR, Rominger F, Balalaie S. Silver-Catalyzed Cascade Approach to Access Fused Pyrazolo-naphthyridine and -isoquinoline Backbones and Investigation of Their Photophysical Properties. ACS OMEGA 2025; 10:14063-14074. [PMID: 40256507 PMCID: PMC12004188 DOI: 10.1021/acsomega.4c11109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 04/22/2025]
Abstract
We describe a novel approach for synthesizing diverse fused heterocyclic compounds by utilizing a sequential silver(I) catalyzed reaction between readily obtainable N-amidonaphthyridin ylide and dialkyl acetylenedicarboxylates. This method provides an efficient approach for the selective synthesis of tetracyclic ring-fused 1,6-naphthyridine and isoquinoline derivatives, offering exceptional structural diversity. In addition, the title compounds constitute an interesting class of luminophores with tunable emission solvatochromicity.
Collapse
Affiliation(s)
- Fatemeh Abdiyan Mobarakeh
- Peptide
Chemistry Research Institute, K. N. Toosi
University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Mohammad Rezaei-Gohar
- Peptide
Chemistry Research Institute, K. N. Toosi
University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Kamran Amiri
- Peptide
Chemistry Research Institute, K. N. Toosi
University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Hamid Reza Bijanzadeh
- Department
of Environmental Sciences, Faculty of Natural Resources and Marine
Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| | - Frank Rominger
- Organisch-Chemisches
Institut der Universität Heidelberg, Im Neuenheimer Feld 271, 69120 Heidelberg, Germany
| | - Saeed Balalaie
- Peptide
Chemistry Research Institute, K. N. Toosi
University of Technology, P.O. Box 15875-4416, Tehran, Iran
| |
Collapse
|
2
|
Xiao G, Chen Y, Wan Z, Kong D. Asymmetric Multi-Atom Insertion of Esters via Rh-Catalyzed Ring Opening of Oxabicyclic Alkenes. Org Lett 2025; 27:3782-3788. [PMID: 40170492 DOI: 10.1021/acs.orglett.5c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Precise skeletal manipulation involving insertion, deletion, and replacement has garnered considerable attention within the synthetic chemistry community. Among these processes, multi-atom insertion reactions in acyclic compounds remain a formidable challenge, primarily due to the low efficiency of fragment recapture after cleavage, which results from the lack of substrate-specific proximity during the reconstruction stage. Here, we report an asymmetric multi-atom insertion reaction of esters via Rh-catalyzed ring opening of oxabicyclic alkenes, achieving excellent regio-, diastereo-, and enantioselectivity. This approach enables the efficient and rapid construction of a molecular library of esters with a chiral hydroxy-dihydronaphthalene scaffold, showcasing an atom-efficient reaction. Detailed density functional theory calculations reveal key mechanistic features and the stereoselectivity-determining model of this transformation.
Collapse
Affiliation(s)
- Guorong Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yixiang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyi Wan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Zhao LM, Wang YJ. Quinazoline-Derived Azomethine Imines as Substrates To Access Polycyclic Compounds. J Org Chem 2024; 89:15393-15403. [PMID: 39436881 DOI: 10.1021/acs.joc.4c02189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Quinazolines are essential structural constituents of many pharmaceuticals and bioactive natural products. Quinazoline-derived azomethine imines (QAIs) have emerged recently as valuable building blocks for the synthesis of various quinazoline derivatives. This Synopsis presents recent advances in (formal) cycloaddition reactions of QAIs for the synthesis of quinazoline-fused 5- to 8-membered heterocycles as well as three-dimensional compounds.
Collapse
Affiliation(s)
- Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Yu-Jiao Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
4
|
Zhou J, Xu B, Shen Q, Zhang Z, Hu Y, Wang M, Su Y, Lei Z, Zhang W, Liu T, Liu H, Hu T, Zhou Y. Identification and biological evaluation of fused tetrahydroisoquinoline derivatives as Wnt/β-catenin signaling inhibitors to suppress colorectal cancer. Eur J Med Chem 2024; 276:116664. [PMID: 39018921 DOI: 10.1016/j.ejmech.2024.116664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Colorectal cancer (CRC) has been becoming one of the most common causes of cancer mortality worldwide. Accumulating studies suggest that the progressive up-regulation of Wnt/β-catenin signaling is a crucial hallmark of CRC, and suppressing it is a promising strategy to treat CRC. Herein, we reported our latest efforts in the discovery of novel fused tetrahydroisoquinoline derivatives with good anti-CRC activities by screening our in-house berberine-like library and further structure-activity relationship (SAR) studies, in which we identified compound 10 is a potent lead compound with significant antiproliferation potencies. By the biotinylated probe and LC-MS/MS study, Hsp90 was identified as its molecular target, which is a fully different mechanism of action from what we reported before. Further studies showed compound 10 directly engaged the N-terminal site of Hsp90 and promoted the degradation of β-catenin, thereby suppressing the Wnt/β-catenin signaling. More importantly, compound 10 exhibits favorable pharmacokinetic parameters and significant anti-tumor efficacies in the HCT116 xenograft model. Taken together, this study furnished the discovery of candidate drug compound 10 possessing a novel fused tetrahydroisoquinoline scaffold with excellent in vitro and in vivo anti-CRC activities by targeting Hsp90 to disturb Wnt/β-catenin signaling pathway, which lay a foundation for discovering more effective CRC-targeted therapies.
Collapse
Affiliation(s)
- Jianhui Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Beibei Xu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qianwen Shen
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Zhenwei Zhang
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yuting Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mengxue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yongcheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Ziyu Lei
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Tao Liu
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| | - Yu Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
5
|
Zhou J, Wang N, Wang M, Hu Y, Zhang Z, Gu Z, Wang J, Shou H, Cheng X, Liu H, Li Y, Zhou Y. Discovery and Optimization of Tetrahydroisoquinoline Derivatives To Enhance Lysosome Biogenesis as Preclinical Candidates for the Treatment of Alzheimer's Disease. J Med Chem 2024; 67:8836-8861. [PMID: 38830007 DOI: 10.1021/acs.jmedchem.4c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
More than 55 million individuals are suffering from Alzheimer's disease (AD), while the effective therapeutic strategies remain elusive. Our previous study identified a lysosome-enhancing lead compound LH2-051 with a tetrahydroisoquinoline scaffold through a novel dopamine transporter-cyclin-dependent kinase 9-transcription factor EB (DAT-CDK9-TFEB) regulation mechanism to promote TFEB activation and lysosome biogenesis. Here, we launched a comprehensive structure-activity relationship study for LH2-051, and 47 new derivatives were designed and synthesized, in which several compounds exhibited remarkable lysosome-enhancing activities. Notably, compounds 37 and 45 exhibited more favorable TFEB activation and lysosome biogenesis capabilities, good safety profiles, and excellent pharmacokinetic profiles with high brain penetration. Further investigations demonstrated that both compounds significantly enhance the clearance of Aβ aggregates and ameliorate the impairment of learning, memory, and cognition in APP/PS1 mice. Overall, these results indicated that compounds 37 and 45 are promising preclinical drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Jianhui Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Wang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Science, Fudan University, Shanghai 200032, China
| | - Mengxue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwei Zhang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhiyong Gu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jing Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haowen Shou
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Cheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yang Li
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Science, Fudan University, Shanghai 200032, China
| | - Yu Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
6
|
Tran R, Brownsey DK, O'Sullivan L, Brandow CMJ, Chang ES, Zhou W, Patel KV, Gorobets E, Derksen DJ. Leveraging Pyrazolium Ylide Reactivity to Access Indolizine and 1,2-Dihydropyrimidine Derivatives. Chemistry 2024; 30:e202400421. [PMID: 38478466 DOI: 10.1002/chem.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 04/06/2024]
Abstract
N-Heterocyclic ylides are important synthetic precursors to rapidly build molecular complexity. Pyrazolium ylides have largely been unexplored, and we demonstrate their diverse utility in this report. We show that these readily accessible building blocks can be used to construct different heterocyclic skeletons by varying the coupling partner. Indolizines can be formed via an N-deletion type mechanism when reacting pyrazolium salts with electron deficient alkynes. 1,2-Dihydropyrimidines can be formed via a rearrangement mechanism when reacting pyrazolium ylides with isocyanates. These reactions enable access to valuable heteroarenes without the need for transition metal catalysis, high temperatures, or strong bases.
Collapse
Affiliation(s)
- Ricky Tran
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Duncan K Brownsey
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Leonie O'Sullivan
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Connor M J Brandow
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Emily S Chang
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Wen Zhou
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Ketul V Patel
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Evgueni Gorobets
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Darren J Derksen
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| |
Collapse
|
7
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
8
|
Akhtar M, Niu J, Zhu Y, Luo Z, Tian T, Dong Y, Wang Y, Fareed MS, Lin L. Anti-inflammatory efficacy and relevant SAR investigations of novel chiral pyrazolo isoquinoline derivatives: Design, synthesis, in-vitro, in-vivo, and computational studies targeting iNOS. Eur J Med Chem 2023; 256:115412. [PMID: 37146344 DOI: 10.1016/j.ejmech.2023.115412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Isoquinoline alkaloids are a rich source of multimodal agents with distinctive structural specificity and various pharmacological activities. In the present report, we propose a combination of design, synthesis, computational study, primary in-vitro screening using the lipopolysaccharide (LPS)-induced RAW 264.7 cell line, and in-vivo evaluation in mice models as a novel approach to speed up anti-inflammatory drugs discovery. The nitric oxide (NO) inhibitory effect of new compounds revealed that all of them displayed the potent NO inhibitory ability in a dose-dependent manner with no obvious cytotoxicity. A series of the model compounds 7a, 7b, 7d, 7f, and 7g have been identified as the most promising, with IC50 values of 47.76 μM, 33.8 μM, 20.76 μM, 26.74 μM, and 47.8 μM respectively in LPS-induced RAW 264.7 cell line. Structure-activity relationship (SAR) studies on a range of derivatives aided in identifying key pharmacophores in the lead compound. Western blotting data of 7d identified that our synthesized compounds can down-regulate and suppress the expression of the key inflammatory enzyme, inducible nitric oxide synthase (iNOS). These results suggested that synthesized compounds may be potent anti-inflammatory agents, inhibiting the NO-release, in turn, iNOS inflammatory pathways. Furthermore, in-vivo anti-inflammatory detection via xylene-induced ear edema in mice revealed that these compounds could also inhibit swelling in mice, with model compound 7h showing an inhibition activity (64.4%) at a concentration of 10 mg/kg comparable to the reference drug celecoxib. Molecular docking results showed that shortlisted compounds (7b, 7c, 7d, 7e, and 7h) had a potential binding affinity for iNOS with low energies, with S-Score to be -7.57, -8.22, -7.35, -8.95, -9.94 kcal/mol, respectively. All results demonstrated that the newly synthesized chiral pyrazolo isoquinoline derivatives are highly potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Maryam Akhtar
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jiabin Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yujie Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhaoyi Luo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Ting Tian
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuanliang Dong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Muhammad Subaan Fareed
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
9
|
Mondal S, Ghosh A, Biju AT. N-Heterocyclic Carbene (NHC)-Catalyzed Transformations Involving Azolium Enolates. CHEM REC 2022; 22:e202200054. [PMID: 35562645 DOI: 10.1002/tcr.202200054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Indexed: 11/08/2022]
Abstract
The recent advances in the N-heterocyclic carbene (NHC)-organocatalyzed generation of azolium enolate intermediates and their subsequent interception with electrophiles are highlighted. The NHC-bound azolium intermediates are generated by the addition of NHCs to suitably substituted aldehydes, acid derivatives or ketenes. A broad range of coupling partners can intercept the azolium enolates to form [2+n] cycloadducts (n=2,3,4) and various α-functionalized compounds. The enantioselective synthesis of the target compounds are achieved with the use of chiral NHCs. Herein, we summarized the development that occurred in this subclass of NHC catalysis.
Collapse
Affiliation(s)
- Santigopal Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012
| | - Arghya Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012
| |
Collapse
|
10
|
Zhen G, Jiang K, Yin B. Progress in Organocatalytic Dearomatization Reactions Catalyzed by Heterocyclic Carbenes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guangjin Zhen
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Kai Jiang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Biaolin Yin
- South China University of Technology Dept. of Chenistry and chemical engineering Wushan Street 510640 Guangzhou CHINA
| |
Collapse
|
11
|
Wu P, Zhang Y, Cheng Y. Sequential Ag(I) Salt and Chiral N-Heterocyclic Carbene Catalysis Enables Enantioselective and Diastereoselective Construction of Complex Heterocyclic Molecules and the Switch of Stereoselectivity. J Org Chem 2022; 87:2779-2796. [PMID: 35041426 DOI: 10.1021/acs.joc.1c02703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic reactions under cascade catalysis provide a powerful strategy to construct molecules of complexed structures. Reported herein is the sequential silver(I) salt and chiral N-heterocyclic carbene (NHC) catalyzed enantioselective and diastereoselective synthesis of a diversity of unprecedented fused heterocyclic compounds from the reactions of readily available N'-((2-alkynyl-3-pyridinyl)methylene)hydrazides with 2-aroylvinylcinnamaldehydes. Both reaction pathways and stereoselectivity were steered conveniently and efficiently by the employment of different NHCs and bases, enabling the selective preparation of pentacyclic ring-fused 1,6-naphthyridine derivatives and 1,6-naphthyridine-substituted tricyclic products in moderated to good yields with high enantioselectivity and diastereoselectivity. Mechanisms accounting for the selective transformations, especially the effect of base and chiral NHC catalyst on the reaction course and stereochemistry of products, were also discussed.
Collapse
Affiliation(s)
- Pei Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yue Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ying Cheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Organocatalysis: A Tool of Choice for the Enantioselective Nucleophilic Dearomatization of Electron-Deficient Six-Membered Ring Azaarenium Salts. Catalysts 2021. [DOI: 10.3390/catal11101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nucleophilic dearomatization of azaarenium salts is a powerful strategy to access 3D scaffolds of interest from easily accessible planar aromatic azaarene compounds. Moreover, this approach yields complex dihydroazaarenes by allowing the functionalization of the scaffold simultaneously to the dearomatization step. On the other side, organocatalysis is nowadays recognized as one of the pillars of the asymmetric catalysis field of research and is well-known to afford a high level of enantioselectivity for a myriad of transformations thanks to well-organized transition states resulting from low-energy interactions (electrostatic and/or H-bonding interactions…). Consequently, in the last fifteen years, organocatalysis has met great success in nucleophilic dearomatization of azaarenium salts. This review summarizes the work achieved up to date in the field of organocatalyzed nucleophilic dearomatization of azaarenium salts (mainly pyridinium, quinolinium, quinolinium and acridinium salts). A classification by organocatalytic mode of activation will be disclosed by shedding light on their related advantages and drawbacks. The versatility of the dearomatization approach will also be demonstrated by discussing several chemical transformations of the resulting dihydroazaarenes towards the synthesis of structurally complex compounds.
Collapse
|
13
|
Zhao C, Blaszczyk SA, Wang J. Asymmetric reactions of N-heterocyclic carbene (NHC)-based chiral acyl azoliums and azolium enolates. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Zhang Y, Huang X, Guo J, Wei C, Gong M, Fu Z. Carbene-Catalyzed Enantioselective Synthesis of γ-Keto-β-silyl Esters and Amides. Org Lett 2020; 22:9545-9550. [PMID: 33300797 DOI: 10.1021/acs.orglett.0c03589] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A variety of γ-keto-β-silyl esters and amides, most with extremely high enantioselectivities, were efficiently prepared via a carbene-catalyzed formal [4 + 2] annulation followed by ring opening with nucleophiles. The resulting compounds from this one-pot strategy can be easily converted into enantioenriched β,σ-dihydroxyl esters.
Collapse
Affiliation(s)
- Yuxia Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xuan Huang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Chenlong Wei
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Minghua Gong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
15
|
Dai W, Li C, Liu Y, Han X, Li X, Chen K, Liu H. Palladium-catalyzed [4 + 3] dearomatizing cycloaddition reaction of N-iminoquinolinium ylides. Org Chem Front 2020. [DOI: 10.1039/d0qo00320d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient approach to obtain saturated seven-membered ring containing three heteroatoms has been developed by using a palladium-catalyzed [4 + 3] dearomatizing cycloaddition. This approach features mild conditions and good functional group tolerance.
Collapse
Affiliation(s)
- Wenhao Dai
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- China
- State Key Laboratory of Drug Research
| | - Chunpu Li
- State Key Laboratory of Drug Research
- Drug Discovery and Design Center
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Yichu Liu
- State Key Laboratory of Drug Research
- Drug Discovery and Design Center
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Xu Han
- State Key Laboratory of Drug Research
- Drug Discovery and Design Center
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Xingjun Li
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- China
- State Key Laboratory of Drug Research
| | - Kaixian Chen
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- China
- State Key Laboratory of Drug Research
| | - Hong Liu
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- China
- State Key Laboratory of Drug Research
| |
Collapse
|
16
|
Ma JT, Cheng Y. Construction of enantiopure imine bridged benzo[c]azepinones by a silver(i) and chiral N-heterocyclic carbene multicatalytic reaction sequence of N′-(2-alkynylbenzylidene)hydrazides and cyclopropanecarbaldehydes. Org Chem Front 2020. [DOI: 10.1039/d0qo00877j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient method for the synthesis of enantiopure bridged benzo[c]azepinone compounds has been developed by metal/N-heterocyclic carbene multicatalysis.
Collapse
Affiliation(s)
- Jin-Tao Ma
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Ying Cheng
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
17
|
Huang R, Chen X, Mou C, Luo G, Li Y, Li X, Xue W, Jin Z, Chi YR. Carbene-Catalyzed α-Carbon Amination of Chloroaldehydes for Enantioselective Access to Dihydroquinoxaline Derivatives. Org Lett 2019; 21:4340-4344. [PMID: 31117715 DOI: 10.1021/acs.orglett.9b01520] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An NHC-catalyzed α-carbon amination of chloroaldehydes was developed. Cyclohexadiene-1,2-diimines are used as amination reagents and four-atom synthons. Our reaction affords optically enriched dihydroquinoxalines that are core structures in natural products and synthetic bioactive molecules.
Collapse
Affiliation(s)
- Ruoyan Huang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Xingkuan Chen
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Chengli Mou
- Guizhou University of Traditional Chinese Medicine , Huaxi District , Guiyang 550025 , China
| | - Guoyong Luo
- Guizhou University of Traditional Chinese Medicine , Huaxi District , Guiyang 550025 , China
| | - Yongjia Li
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Xiangyang Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Wei Xue
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District , Guiyang 550025 , China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| |
Collapse
|
18
|
Li X, Duan R, Wang Y, Qu LB, Li Z, Wei D. Insights into N-Heterocyclic Carbene-Catalyzed Oxidative α-C(sp 3)-H Activation of Aliphatic Aldehydes and Cascade [2 + 2] Cycloaddition with Ketimines. J Org Chem 2019; 84:6117-6125. [PMID: 31012584 DOI: 10.1021/acs.joc.9b00295] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Predicting the chemoselectivity of [2 + 2] cyclizations is an important challenge in organic chemistry. Herein, we provided a valuable case for this issue. Density functional theory calculations were performed to systematically study the possible mechanisms and origin of selectivities for the N-heterocyclic carbene (NHC)-catalyzed oxidative α-C(sp3)-H activation of aliphatic aldehydes and the cascade [2 + 2] cycloaddition with ketimines. The [2 + 2] cycloaddition of azolium enolate intermediates to the C═N bond, rather than the C═O bond of ketimine, is revealed to be determined by chemo- and stereoselectivity. By comparing the energy gap between the frontier molecular orbitals (FMOs) of the two reacting parts involved in the [2 + 2] cycloaddition transition states, we propose a new strategy to determine the origin of the reaction chemoselectivity. Moreover, the local nucleophilic index can efficiently predict the active site of ketimines. Further analyses illustrate that NHC can increase the nucleophilicity of aldehydes and the acidity of the α-C(sp3)-H bond, and 3,3',5,5'-tetra- tert-butyl diphenoquinone (DQ) acts as an oxidant and promotes α-C(sp3)-H bond deprotonation. This work is useful not only for understanding the NHC-catalyzed oxidative [2 + 2] annulation but also for developing new applications of the FMO theory in organocatalytic cyclizations.
Collapse
Affiliation(s)
- Xue Li
- The College of Chemistry and Molecular Engineering , Zhengzhou University , 100 Science Avenue , Zhengzhou , Henan 450001 , P. R. China
| | - Ruihong Duan
- The College of Chemistry and Molecular Engineering , Zhengzhou University , 100 Science Avenue , Zhengzhou , Henan 450001 , P. R. China
| | - Yanyan Wang
- The College of Chemistry and Molecular Engineering , Zhengzhou University , 100 Science Avenue , Zhengzhou , Henan 450001 , P. R. China
| | - Ling-Bo Qu
- The College of Chemistry and Molecular Engineering , Zhengzhou University , 100 Science Avenue , Zhengzhou , Henan 450001 , P. R. China
| | - Zhongjun Li
- The College of Chemistry and Molecular Engineering , Zhengzhou University , 100 Science Avenue , Zhengzhou , Henan 450001 , P. R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering , Zhengzhou University , 100 Science Avenue , Zhengzhou , Henan 450001 , P. R. China
| |
Collapse
|
19
|
Li X, Li SJ, Wang Y, Wang Y, Qu LB, Li Z, Wei D. Insights into NHC-catalyzed oxidative α-C(sp3)–H activation of aliphatic aldehydes and cascade [2 + 3] cycloaddition with azomethine imines. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00526a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The NHC catalyst is identified to promote [2 + 3] cycloaddition by avoiding the poor FMO overlap mode in theory.
Collapse
Affiliation(s)
- Xue Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Shi-Jun Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yanyan Wang
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yang Wang
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P.R. China
| | - Ling-Bo Qu
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Zhongjun Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
20
|
Liu Y, Mao Z, Pradal A, Huang PQ, Oble J, Poli G. Palladium-Catalyzed [3 + 2]-C-C/N-C Bond-Forming Annulation. Org Lett 2018; 20:4057-4061. [PMID: 29897775 DOI: 10.1021/acs.orglett.8b01616] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of bi- and tricyclic structures incorporating pyrrolidone rings is disclosed, starting from resonance-stabilized acetamides and cyclic α,β-unsaturated-γ-oxycarbonyl derivatives. This process involves an intermolecular Tsuji-Trost allylation/intramolecular nitrogen 1,4-addition sequence. Crucial for the success of this bis-nucleophile/bis-electrophile [3 + 2] annulation is its well-defined step chronology in combination with the total chemoselectivity of the former step. When the newly formed annulation product carries a properly located o-haloaryl moiety at the nitrogen substituent, a further intramolecular keto α-arylation can join the cascade, thereby forming two new cycles and three new bonds in the same synthetic operation.
Collapse
Affiliation(s)
- Yang Liu
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS , Institut Parisien de Chimie Moléculaire , IPCM, 4 place Jussieu , 75005 Paris , France
| | - Zhongyi Mao
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS , Institut Parisien de Chimie Moléculaire , IPCM, 4 place Jussieu , 75005 Paris , France
| | - Alexandre Pradal
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS , Institut Parisien de Chimie Moléculaire , IPCM, 4 place Jussieu , 75005 Paris , France
| | - Pei-Qiang Huang
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), College of Chemistry and Chemical Engineering , Xiamen University , Fujian 361005 , P. R. China
| | - Julie Oble
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS , Institut Parisien de Chimie Moléculaire , IPCM, 4 place Jussieu , 75005 Paris , France
| | - Giovanni Poli
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS , Institut Parisien de Chimie Moléculaire , IPCM, 4 place Jussieu , 75005 Paris , France
| |
Collapse
|
21
|
Yang L, Lv Y, Wang F, Zhong G. Chiral NHC-catalyzed 1,3-dipolar [3 + 2] cycloaddition of azomethine imines with α-chloroaldehydes for the synthesis of bicyclic pyrazolidinones. Org Biomol Chem 2018; 16:4433-4438. [DOI: 10.1039/c8ob00925b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An NHC-catalyzed [3 + 2] cycloaddition reaction of azomethine imines and α-chloroaldehydes was developed for the synthesis of chiral bicyclic pyrazolidinone derivatives.
Collapse
Affiliation(s)
- Limin Yang
- College of Materials
- Chemistry & Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Yunbo Lv
- College of Materials
- Chemistry & Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Fei Wang
- College of Materials
- Chemistry & Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Guofu Zhong
- College of Materials
- Chemistry & Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| |
Collapse
|