1
|
Fabris F, Illner M, Repke JU, Scarso A, Schwarze M. Is Micellar Catalysis Green Chemistry? Molecules 2023; 28:4809. [PMID: 37375364 DOI: 10.3390/molecules28124809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Many years ago, twelve principles were defined for carrying out chemical reactions and processes from a green chemistry perspective. It is everyone's endeavor to take these points into account as far as possible when developing new processes or improving existing ones. Especially in the field of organic synthesis, a new area of research has thus been established: micellar catalysis. This review article addresses the question of whether micellar catalysis is green chemistry by applying the twelve principles to micellar reaction media. The review shows that many reactions can be transferred from an organic solvent to a micellar medium, but that the surfactant also has a crucial role as a solubilizer. Thus, the reactions can be carried out in a much more environmentally friendly manner and with less risk. Moreover, surfactants are being reformulated in their design, synthesis, and degradation to add extra advantages to micellar catalysis to match all the twelve principles of green chemistry.
Collapse
Affiliation(s)
- Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, Mestre, 30172 Venezia, Italy
| | - Markus Illner
- Process Dynamics and Operations Group, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. KWT9, 10623 Berlin, Germany
| | - Jens-Uwe Repke
- Process Dynamics and Operations Group, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. KWT9, 10623 Berlin, Germany
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, Mestre, 30172 Venezia, Italy
| | - Michael Schwarze
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC-08, 10623 Berlin, Germany
| |
Collapse
|
2
|
Shojaeimehr T, Schwarze M, Lima MT, Schomäcker R. Correlation of performance data of silica particle flotations and foaming properties of cationic and nonionic surfactants for the development of selection criteria for flotation auxiliaries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Tang C, McInnes BT. Cascade Processes with Micellar Reaction Media: Recent Advances and Future Directions. Molecules 2022; 27:molecules27175611. [PMID: 36080376 PMCID: PMC9458028 DOI: 10.3390/molecules27175611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
Reducing the use of solvents is an important aim of green chemistry. Using micelles self-assembled from amphiphilic molecules dispersed in water (considered a green solvent) has facilitated reactions of organic compounds. When performing reactions in micelles, the hydrophobic effect can considerably accelerate apparent reaction rates, as well as enhance selectivity. Here, we review micellar reaction media and their potential role in sustainable chemical production. The focus of this review is applications of engineered amphiphilic systems for reactions (surface-active ionic liquids, designer surfactants, and block copolymers) as reaction media. Micelles are a versatile platform for performing a large array of organic chemistries using water as the bulk solvent. Building on this foundation, synthetic sequences combining several reaction steps in one pot have been developed. Telescoping multiple reactions can reduce solvent waste by limiting the volume of solvents, as well as eliminating purification processes. Thus, in particular, we review recent advances in “one-pot” multistep reactions achieved using micellar reaction media with potential applications in medicinal chemistry and agrochemistry. Photocatalyzed reactions in micellar reaction media are also discussed. In addition to the use of micelles, we emphasize the process (steps to isolate the product and reuse the catalyst).
Collapse
Affiliation(s)
- Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence:
| | - Bridget T. McInnes
- Computer Science Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
4
|
Kirchhof M, Abitaev K, Abouhaileh A, Gugeler K, Frey W, Zens A, Kästner J, Sottmann T, Laschat S. Interplay of Polarity and Confinement in Asymmetric Catalysis with Chiral Rh Diene Complexes in Microemulsions. Chemistry 2021; 27:16853-16870. [PMID: 34664324 PMCID: PMC9299057 DOI: 10.1002/chem.202102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Microemulsions provide a unique opportunity to tailor the polarity and liquid confinement in asymmetric catalysis via nanoscale polar and nonpolar domains separated by a surfactant film. For chiral diene Rh complexes, the influence of counterion and surfactant film on the catalytic activity and enantioselectivity remained elusive. To explore this issue chiral norbornadiene Rh(X) complexes (X=OTf, OTs, OAc, PO2 F2 ) were synthesized and characterized by X-ray crystallography and theoretical calculations. These complexes were used in Rh-catalyzed 1,2-additions of phenylboroxine to N-tosylimine in microemulsions stabilized either exclusively by n-octyl-β-D-glucopyranoside (C8 G1 ) or a C8 G1 -film doped with anionic or cationic surfactants (AOT, SDS and DTAB). The Rh(OAc) complex showed the largest dependence on the composition of the microemulsion, yielding up to 59 % (90 %ee) for the surfactant film doped with 5 wt% of AOT as compared to 52 % (58 %ee) for neat C8 G1 at constant surfactant concentration. Larger domains, determined by SAXS analysis, enabled further increase in yield and selectivity while the reaction rate almost remained constant according to kinetic studies.
Collapse
Affiliation(s)
- Manuel Kirchhof
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Karina Abitaev
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Abdulwahab Abouhaileh
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Katrin Gugeler
- Institut für Theoretische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Wolfgang Frey
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Anna Zens
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Johannes Kästner
- Institut für Theoretische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Thomas Sottmann
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sabine Laschat
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
5
|
Hu TM, Lin CY, Wu MJ. Kinetics of fluoride-catalysed synthesis of organosilica colloids in aqueous solutions of amphiphiles. RSC Adv 2019; 9:28028-28037. [PMID: 35530447 PMCID: PMC9070784 DOI: 10.1039/c9ra05509f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/29/2019] [Indexed: 01/15/2023] Open
Abstract
Reactions involving hydrophobic reactants in water can be much accelerated in organic solvent-free solutions containing amphiphiles at neutral pH and room temperature. Previously, we demonstrated that organosilica colloidal particles could be conveniently synthesized by a versatile salt-catalysis method in solutions modified with various amphiphilic molecules. The method precludes the use of any solvent, any added form of energy (thermal or mechanical), and any strong (or hazardous) acids/bases. Herein, the kinetic properties of the reaction were systematically investigated for fluoride-catalysed synthesis of colloidal organosilica from a thiol-functionalized organosilane precursor, (3-mercaptopropyl)trimethoxysilane. Continuous, real-time ATR-FTIR measurements allowed probing the time evolution of organosilica condensation in different reaction systems, containing one of the following: non-ionic surfactants (Tween 20, Tween 40, Tween 60, Tween 80, Triton X-100), anionic surfactant (sodium dodecyl sulphate; SDS), cationic surfactant (cetyltrimethylammonium bromide; CTAB), and amphiphilic polymers (polyvinyl alcohol and polyvinylpyrrolidone). Overall, while some amphiphile-specific properties were revealed, fluoride-catalysed synthesis was ultrafast with a universal two-phase kinetic scheme (e.g. transition within 5–10 min) for all amphiphiles studied. Systematic real-time ATR-FTIR studies reveal ultrafast two-phase kinetics of sodium fluoride-catalysed synthesis of organosilica colloids in purely aqueous, amphiphile-assisted systems.![]()
Collapse
Affiliation(s)
- Teh-Min Hu
- Faculty of Pharmacy
- School of Pharmaceutical Sciences
- National Yang-Ming University
- Taipei 112
- Taiwan
| | - Chien-Yu Lin
- Faculty of Pharmacy
- School of Pharmaceutical Sciences
- National Yang-Ming University
- Taipei 112
- Taiwan
| | - Meng-Ju Wu
- Faculty of Pharmacy
- School of Pharmaceutical Sciences
- National Yang-Ming University
- Taipei 112
- Taiwan
| |
Collapse
|
6
|
Schmidt M, Schreiber S, Franz L, Langhoff H, Farhang A, Horstmann M, Drexler HJ, Heller D, Schwarze M. Hydrogenation of Itaconic Acid in Micellar Solutions: Catalyst Recycling with Cloud Point Extraction? Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcel Schmidt
- Technische Universität Berlin, Department of Chemistry, Sekr. TC-8, Strasse des 17. Juni 124, Berlin, D-10623, Germany
| | - Saskia Schreiber
- Technische Universität Berlin, Department of Chemistry, Sekr. TC-8, Strasse des 17. Juni 124, Berlin, D-10623, Germany
| | - Luise Franz
- Technische Universität Berlin, Department of Chemistry, Sekr. TC-8, Strasse des 17. Juni 124, Berlin, D-10623, Germany
| | - Hauke Langhoff
- Technische Universität Berlin, Department of Chemistry, Sekr. TC-8, Strasse des 17. Juni 124, Berlin, D-10623, Germany
| | - Ashkan Farhang
- Technische Universität Berlin, Department of Chemistry, Sekr. TC-8, Strasse des 17. Juni 124, Berlin, D-10623, Germany
| | - Moritz Horstmann
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock, D-18059, Germany
| | - Hans-Joachim Drexler
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock, D-18059, Germany
| | - Detlef Heller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock, D-18059, Germany
| | - Michael Schwarze
- Technische Universität Berlin, Department of Chemistry, Sekr. TC-8, Strasse des 17. Juni 124, Berlin, D-10623, Germany
- Technische Universität Berlin, Department of Process Engineering, Sekr. TK-01, Strasse des 17. Juni 135, Berlin, D-10623, Germany
| |
Collapse
|
7
|
Romney DK, Arnold FH, Lipshutz BH, Li CJ. Chemistry Takes a Bath: Reactions in Aqueous Media. J Org Chem 2018; 83:7319-7322. [DOI: 10.1021/acs.joc.8b01412] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- David K. Romney
- Division of Chemistry and Chemical Engineering, California Institute of Technology
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology
| | - Bruce H. Lipshutz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara
| | | |
Collapse
|